Search Results

You are looking at 21 - 30 of 37 items for

  • Author or Editor: Richard Smith* x
Clear All Modify Search

Commercial lettuce production requires adequate levels of nitrogen (N), phosphorus (P), and potassium (K) to provide high-quality postharvest attributes needed for longer shelf life. Factorial experiments were conducted in Salinas, CA, to evaluate yield and postharvest quality of both romaine and iceberg lettuce using fertilizers containing various levels of N, P, and K. Lettuce was evaluated for yield and postharvest quality parameters, including color, wilt, turgidity, glossiness, decay, brittleness, fringe burn, and salt burn. Uptake of N, P, K, calcium, and silicon by plants was also determined. Regardless of fertilizer treatment, shelf life and visual quality were better in the iceberg lettuce than romaine lettuce when cold-stored at 1 °C for 14 d. Yield increased with increased N application rate, but post-harvest quality fell at high levels of N (337 kg·ha−1) and P (225 kg·ha−1). The most economical treatment providing the highest yield and best post-harvest quality was the combination of 225 kg·ha−1 N and 112 kg·ha−1 P.

Free access

Living mulch systems allow cover crops to be grown during periods of cash crop production, thereby extending the duration of cover crop growth and associated beneficial agroecosystem services. However, living mulches may also result in agroecosystem disservices such as reduced cash crop yields if the living mulch competes with the crop for limiting resources. We examined whether the effects of an Italian ryegrass [Lolium multiflorum (Lam.) Husnot]–white clover (Trifolium repens L., cv. New Zealand) living mulch on broccoli (Brassica oleracea L. var. italica) yield and yield components were dependent on fertilizer rate in field experiments conducted in Durham, NH, in 2011 (Expt. 1) and 2012 (Expt. 2). Drip-irrigated broccoli was grown under a range of organic fertilizer application rates in beds covered with plastic, with and without a living mulch growing in the uncovered, interbed space. Broccoli yields were similar in the living mulch and bare soil controls under the highest rates of fertilizer application in Expt. 1. In Expt. 2, living mulch reduced broccoli yields from 28% to 63%, depending on fertilizer rate. Differences in leaf SPAD values suggest that yield reductions were attributable, in part, to competition for nitrogen; however, other factors likely played a role in determining living mulch effects. Despite yield reductions, the living mulch reduced the prevalence of hollow stem in broccoli in Expt. 1. Organic fertilizer may have inconsistent effects on broccoli yields in living mulch systems.

Free access

Tomato (Solanum lycopersicum) growers select cultivars based on a range of performance criteria. Currently, however, information regarding tomato cultivar performance in high tunnels is lacking. We conducted a tomato cultivar trial in an 1800-ft2 plastic-covered high tunnel in Durham, NH, with 15 indeterminate cultivars using organic fertilizers and pesticides. Tomatoes were grown in-ground in a randomized complete block design (n = 4) using raised beds with plastic mulch and drip irrigation. Marketable and unmarketable yield, several yield components, and susceptibility to two common diseases, leaf mold (Fulvia fulva) and powdery mildew (Oidium lycopersici or Leveillula taurica), were evaluated over a 3-year period. Differences between cultivars existed in all areas of interest, and year-to-year variation in performance was noteworthy in this experiment. ‘Geronimo’ consistently had among the highest yields, ‘Arbason’ and ‘Massada’ produced many individual fruit, and several cultivars including Rebelski, Massada, and Geronimo showed no signs of disease. Some cultivars such as Conestoga appeared susceptible to several different physiological disorders while others were relatively robust against this type of marketable yield reduction. Because we assessed multiple yield and quality variables and observed apparent trade-offs in several of these, we used radar plots to summarize and communicate the performance of each cultivar in an intuitive and comparable manner. Based on these data, several tomato cultivars appear particularly well suited for high tunnel production in northern New England.

Free access

A preliminary screening experiment was conducted to evaluate 47 cowpea [Vigna unguiculata (L.) Walp.] genotypes for use as a weed-suppressing cover crop. Of these, 11 were selected for further testing on the basis of vigorous growth and weed-suppressing ability. In a field experiment repeated over 4 years, the selected genotypes were not different from the leading cover crop cultivar `Iron Clay' in biomass production. Vigor ratings, vine growth ratings, and canopy widths of some genotypes exceeded those of `Iron Clay' Vigor ratings and canopy measurements were efficient selection criteria that could be useful for breeding cover crop cowpea cultivars. All except one selection were highly resistant to southern root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood], and the selections varied in seed size, photoperiod, and response to foliar diseases.

Free access

A preliminary screening experiment was conducted to evaluate 47 cowpea [Vigna unguiculata, (L.) Walp.] genotypes for use as a weed-suppressing cover crop. Lines evaluated in this study included forage varieties, PI accessions, experimental breeding lines, and land races of unknown origin. Of these, 11 were selected for further testing on the basis of vigorous growth and weed-suppressing ability. In a field experiment repeated over 4 years, the selected genotypes were not different from the leading cover crop cultivar, `Iron Clay', in biomass production. Vigor ratings, vine growth ratings, and canopy widths of some genotypes exceeded those of `Iron Clay'. Vigor ratings and canopy measurements were efficient selection criteria that could be useful for breeding cover crop cowpea cultivars. All selections except an African cultivar, `Lalita', were highly resistant to southern root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood], and the genotypes varied in seed size, photoperiod, and response to diseases.

Free access

A 920 bp fragment of the ACC oxidase gene promoter from tomato (LEACO1) was used to drive GUS gene expression. The LEACO1 0.92kb fragment contained two stress-responsive short motifs; a 10 bp TCA motif (5'-TCATCTTCTT-3') twice (allowing two substitutions) and an 8 bp element (5'-AA/TTTCAAA-3') once. The TCA motif is found in over 30 stress- and pathogen-inducible genes while the 8 bp element is necessary for ethylene-response in the carnation GST1 and the tomato E4 gene promoters. Previously in chrysanthemum, cytokinin regulation with LEACO1 0.92kb produced dramatic increases in lateral branching and bud initiation. Tobacco plants carrying LEACO1 0.92kb –GUS were used to examine the response of the LEACO1 0.92kb promoter to various hormones and hormone inhibitors. GUS activity in LEACO1 0.92kb –GUS plants was detected in leaves and stems, but not roots. High expression was detected in shoots with the apical bud intact, but GUS activity decreased with the apical bud removed. Applying IAA to the shoot apex after removing the apical bud, restored GUS activity. However, the IAA transport inhibitor TIBA reduced GUS activity in shoots with intact apical buds, and in IAA-treated shoots with excised buds. In shoots with excised apical buds, GUS activity increased when the ethylene precursor ACC was applied, but decreased in intact shoots when the ethylene biosynthesis inhibitor AOA was applied. These data suggest that auxins produced in the apical meristem are capable of regulating LEACO1 0.92kb activity, probably through auxin-induced ethylene biosynthetic pathway activity.

Free access

As concern over NO3-N pollution of groundwater increases, California lettuce growers are under pressure to improve nitrogen (N) fertilizer efficiency. Crop growth, N uptake, and the value of soil and plant N diagnostic measures were evaluated in 24 iceberg and romaine lettuce (Lactuca sativa L. var. capitata L., and longifolia Lam., respectively) field trials from 2007 to 2010. The reliability of presidedressing soil nitrate testing (PSNT) to identify fields in which N application could be reduced or eliminated was evaluated in 16 non-replicated strip trials and five replicated trials on commercial farms. All commercial field sites had greater than 20 mg·kg−1 residual soil NO3-N at the time of the first in-season N application. In the strip trials, plots in which the cooperating growers’ initial sidedress N application was eliminated or reduced were compared with the growers’ standard N fertilization program. In the replicated trials, the growers’ N regime was compared with treatments in which one or more N fertigation through drip irrigation was eliminated. Additionally, seasonal N rates from 11 to 336 kg·ha−1 were compared in three replicated drip-irrigated research farm trials. Seasonal N application in the strip trials was reduced by an average of 77 kg·ha−1 (73 kg·ha−1 vs. 150 kg·ha−1 for the grower N regime) with no reduction in fresh biomass produced and only a slight reduction in crop N uptake (151 kg·ha−1 vs. 156 kg·ha−1 for the grower N regime). Similarly, an average seasonal N rate reduction of 88 kg·ha−1 (96 kg·ha−1 vs. 184 kg·ha−1) was achieved in the replicated commercial trials with no biomass reduction. Seasonal N rates between 111 and 192 kg·ha−1 maximized fresh biomass in the research farm trials, which were conducted in fields with lower residual soil NO3-N than the commercial trials. Across fields, lettuce N uptake was slow in the first 4 weeks after planting, averaging less than 0.5 kg·ha−1·d−1. N uptake then increased linearly until harvest (≈9 weeks after planting), averaging ≈4 kg·ha−1·d−1 over that period. Whole plant critical N concentration (Nc, the minimum whole plant N concentration required to maximize growth) was estimated by the equation Nc (g·kg−1) = 42 − 2.8 dry mass (DM, Mg·ha−1); on that basis, critical N uptake (crop N uptake required to maintain whole plant N above Nc) in the commercial fields averaged 116 kg·ha−1 compared with the mean uptake of 145 kg·ha−1 with the grower N regime. Soil NO3-N greater than 20 mg·kg−1 was a reliable indicator that N application could be reduced or delayed. Neither leaf N nor midrib NO3-N was correlated with concurrently measured soil NO3-N and therefore of limited value in directing in-season N fertilization.

Free access

The low availability and high cost of farm hand labor make automated thinners a faster and cheaper alternative to hand thinning in lettuce (Lactuca sativa). However, the effects of this new technology on the uniformity of plant spacing and size as well as crop yield are not proven. Three experiments were conducted in commercial romaine heart lettuce fields in 2013 and 2014 in Imperial Valley, CA, to compare the effects of automated thinning and hand thinning on uniformity of in-row spacing, plant size, and crop yield. Overhead images taken at 1 week after hand thinning indicate that thinning 8 to 11 days earlier by automated thinners did not affect plant size compared with the hand thinning treatment. However, lettuce plants in the automated thinning treatment were larger than plants in the hand thinning treatment 2 to 3 weeks after hand thinning. Automated thinners increased the uniformity of in-row spacing, increased the percentage of plants with the desired in-row spacing of 24 to 32 cm, and almost completely removed plants with an undesirable in-row spacing of 4 to 20 cm. As a result, individual lettuce plant weight and heart weight from the automated thinning plots was significantly greater and plants were more uniform compared with the hand thinned plants. Despite increases in lettuce plant size and uniformity in all three experiments, yield benefits of automated thinning were only significant in one of the three experiments due to larger plant populations resulting from hand thinning. This study suggests that automated thinning increases lettuce plant size and uniformity and makes it possible for growers to increase plant population and crop yield by optimizing in-row spacing.

Full access

This article summarizes the current status of organic vegetable production practices in California. The production of vegetables organically is growing rapidly in California, led in large part by growth in the market demand for organically grown produce. Key aspects of organic vegetable production operations such as certification and farm production planning, soil management, weed management, insect management, and plant disease management involve special practices. Many practices have not been thoroughly researched and the scientific base for some practices is still being developed.

Full access

Application of calcium (Ca) fertilizers is a common practice of California lettuce growers to minimize the occurrence and severity of tipburn, particularly in romaine lettuce (Lactuca sativa L. var. longifolia Lam.). An evaluation of the effect of soil Ca availability on the severity of tipburn in romaine lettuce was conducted in the Salinas Valley of central California in 2005 to 2006. Twenty representative soils from this region were evaluated for Ca availability by ammonium acetate extraction, saturated paste extraction, and extraction of soil solution through centrifugation of soil at field-capacity moisture content. Soil solution Ca in these soils was generally high, ranging from 5 to 80 mmolc·L−1, representing 44% to 71% of cations on a charge basis. Soil solution Ca was highly correlated with saturated paste Ca (r 2 = 0.70) but not with exchangeable Ca (r 2 = 0.01). However, saturated paste extraction significantly underestimated soil solution Ca concentration (regression slope = 0.19). A survey of 15 commercial romaine lettuce fields showed tipburn severity to be unrelated to either leaf Ca concentration or soil Ca availability. The most severe tipburn was observed in fields in which transpiration was reduced by foggy weather during the final 2 weeks of growth. Ca fertilizers (calcium nitrate, calcium thiosulfate, and calcium chloride) applied through drip irrigation during the final weeks of lettuce growth were ineffective in increasing romaine leaf Ca concentration in three field trials; tipburn was present in only one trial, and Ca fertigation had no effect on tipburn severity. We conclude that under typical field conditions in this region, tipburn severity is primarily a function of environmental conditions. Soil Ca availability plays no substantive role in tipburn severity, and Ca fertigation does not improve lettuce Ca uptake or reduce tipburn.

Free access