Search Results

You are looking at 21 - 27 of 27 items for

  • Author or Editor: Paul G. Thompson x
Clear All Modify Search

A breeding program to develop improved sweetpotato genotypes with increased sweetpotato weevil resistance was started in 1990. Germplasm, including plant introductions, cultivars, and breeding lines with reported insect resistance, was field tested for injury levels by applying low numbers of weevils. Low levels of resistance were found and `Regal' was among the highest. Top performing lines were selected and intermated. After 2 selection cycles the most highly resistant selection produced 89% uninjured roots compared to 28% in `Regal'. Severity of injury score was 16 times lower in the most resistant selection (0.15) compared to `Regal' (2.40).

Free access

Responses of sweet potato (Ipomoea batatas (L>) Lam) to irrigation rates were evaluated under line-source irrigation systems on Tifton loamy sand soil in Georgia and on a Bude silt loam soil in Mississippi. Total water (rainfall plus irrigation) rates ranged from about 55% to 160% of pan evaporation (Epan). Marketable yields increased with irrigation rate until total water was about 75% of Epan then decreased rapidly with greater irrigation rates. Sweet potato yields were more sensitive to excessive water rates when grown on a silt loam than on a sandy loam soil. Storage loss and quality of cooked 'Jewel' sweet potato roots also increased as the irrigation rate increased until total water was 75% to 95% of Epan then decreased rapidly at water rates of 135 to 160% of Epan.

Free access

One hundred U.S. sweetpotato [Ipomoea batatus (L.) Lam.] plant introductions (PIs) and four control cultivars were screened for insect injury in 1993. Of the least injured by insects, 56 and 31 were tested again in 1994 and 1995, respectively. Among control cultivars, the most highly resistant was `Regal' (moderately resistant), followed by `Beauregard' (susceptible), `Centennial' (susceptible), and `Jewel' (susceptible). Stem and root injury by the sweetpotato weevil (SPW) [Cylas formicarius elegantulus (Summers)] and root injury by the wireworm (Conoderus sp.)–Diabrotica sp. (cucumber beetle)– Systena sp. (flea beetle) (WDS) complex were measured. SPW stem injury was less severe (P ≤ 0.05) in 1994 and 1995 in PIs 508523, 531116, and 564107 than in control cultivars. PIs 508523 and 531116 also suffered less SPW root injury than did `Regal'. In the six PIs with least SPW root injury, PIs 538354, 564149, 508523, 538286, 531116, and 564103, 70% to 85% of the roots were not injured compared with 36% in `Regal' and 6% in `Jewel'. SPW root injury scores (0 = no injury; 5 = severe injury) in those PIs averaged 0.5 vs. 2.3 for `Regal'. Only in PI 538286 was WDS injury to roots less than in `Regal' over 2 years. However, eight additional accessions suffered less WDS injury than `Regal' in 1995 and four of those were among the six with least SPW injury. The lower levels of combined insect injury found in these four PIs (compared to `Regal') show that PIs have potential use for increasing insect resistance in sweetpotato improvement programs.

Free access

Twenty-four half-sib sweetpotato families were field tested for freedom from injury by sweetpotato weevil and other soil inhabiting, injurious insects (WDS). Three pairs of adult male and female weevils were applied to the crown of each plant at the beginning of storage root enlargement. Naturally occurring numbers of WDS were high enough for considerable injury from those insects. WDS injury free roots ranged from 19% in Centennial, the suceptible control, to 57% in Regal, the resistant control. The highest family mean for percent non-injured by WDS was 55%. Weevil injury free roots ranged from 67% in Centennial to 90% in Regal with 3 families producing mean weevil non-injured roots of 89%. The genetic correlation between weevil injury free and WDS injury free roots was 0.69 ± 0.28. That estimate is preliminary and based on data from one environment. Evaluations will be repeated in 1994 for estimates of GXE to derive genetic correlation estimates with less environmental interactions.

Free access

The inheritance of root-knot nematode race 3 [Meloidogyne incognita (Kofoid & White) Chitwood] resistance was studied in 71 progenies of the F1 backcross population produced from the resistant parent `Regal' and the susceptible parent `Vardaman'. The distribution frequency of the progenies measured on total nematode number (eggs + juveniles) indicated a bimodal distribution with a ratio of 4 resistant: 1 susceptible. Based on this phenotypic ratio, the proposed genetic model was duplex polysomic inheritance (RRrrrr = resistant). Bulk segregant analysis in conjunction with the RAPD technique was employed to identify RAPD marker linked to the root knot nematode-resistant gene. Nine of 760 random decamer primers screened showed polymorphic bands. Primer OPI51500 produced a band in the resistant bulk, but not in the susceptible bulk. Estimated recombination frequency of 0.24 between the OPI51500 marker and the root-knot nematode-resistant gene indicated linkage.

Free access

Seventeen plant bed fertilizer treatments including different rates of N, P, and K were evaluated for the effect on plant production and sweetpotato yield. `Beauregard' storage roots were bedded. Treatments were 0, 40, 80 lb N/ac; 0, 80, 160 lb P/ac; or 0, 75, 150, and 300 lb K/ac. Each nutrient was evaluated in a separate trial. After the first cutting, half of the N treatments and all P and K treatments had 40 lb N/ac top-dressed on the beds. For the first cutting the high rate of N (80 lb/ac) had a higher green weight than the low rate of 0 lb/ac. There wer no other differences found in the first or second cuttings for plant production or yield. Plant bed fertilization also had no effect on transplant survival.

Free access