Search Results

You are looking at 21 - 28 of 28 items for

  • Author or Editor: Orville M. Lindstrom x
Clear All Modify Search

Freeze tests were performed on stem sections of Fraxinus americana, Lagerstroemia indica Magnolia gradiflora, Rhododendron `Red Ruffle', Zelkova serrata, and leaves of Magnolia grandiflora and Rhododendron `Red Ruffle' in the tinter and summer of 1993. Freeze injury was quantified using electrolyte and phenolic leakage techniques and compared to the lethal temperature range determined by visual method assisted by differential thermal analysis. Richards function was fitted to the electrolyte and phenolic leakage data by the modified Gauss-Newton method. The inflection point of the Richards function coincided with the lethal injury range for non-acclimated leaves, but overestimated the freeze tolerance for acclimated leaves and for both acclimated and non-acclimated stems. A proposed interception point of the lower asymptote and a line tangential to the curve inflection point provided an improved estimate of the lethal injury range in most of the species.

Free access

Differential thermal analysis (DTA) has great potential as a quick and convenient cold hardiness determination method in plants. It measures freezing events inside of plant samples by detecting exotherm(s) produced when water changes from liquid to solid phase. DTA is highly sensitive to the experimental conditions and it has been reported to be ineffective among different fruit crops after acclimation of floral buds has occurred. The objective of this project was to establish DTA as a rapid and accurate method to predict peach floral bud cold hardiness from acclimation to deacclimation as compared with the traditional standard artificial freezing test. Floral buds of ‘Elberta’ and ‘Flavorich’ peach cultivars were subjected to DTA and artificial freezing tests throughout the winters of 2015–16 and 2016–17. Before deacclimation, two distinct exotherms, low-temperature exotherms (LTE) and high-temperature exotherms (HTE), were normally detected from floral bud DTA analyses. After deacclimation, DTA tests yielded only a few LTEs. However, incubation of floral buds at −2 °C overnight before the cooling process of DTA tests yielded an increased number of LTEs for both seasons in comparison with samples directly run using DTA without incubation. Similarly, after deacclimation started, the temperature in which LTE occurred was correlated (r = 0.59–0.86) with LT50 (lethal temperature that damaged 50% of floral buds) when DTA samples were treated overnight at −2 °C. In our study, pretreatment of floral buds at −2 °C overcame the inability of DTA to detect LTEs after deacclimation, which improved the ability and reliability of DTA to detect LTEs for more than 50% of the buds used per date per cultivar. DTA is a promising method to predict cold hardiness of peach plants.

Free access

Plants of `Brightwell' and `Tifblue' rabbiteye blueberry (Vaccinium ashei Reade) were subjected to 0, -1, -3, or -4.5 °C for 1 hour during flowering. After treatment, half of the plants were exposed to bees (Bombus sp.) only, and half were exposed to bees and received applications of GA3. Fruit set of both `Brightwell' and `Tifblue' pollinated by bees declined sharply after exposure to -1 °C for 1 hour, but there was no visible damage to corollas, styles, and ovaries. Fruit set of GA3-treated plants of both cultivars equaled that of control plants (plants having no cold exposure) at temperatures ≥+-3 °C. Both pollinated and GA3-treated plants had ≤2% fruit set after exposure of flowers to -4.5 °C. Both prefreeze and postfreeze applications of GA3 were beneficial for fruit set. Assessment of flower part damage at the different temperatures indicated corollas were most sensitive to freeze damage, followed by styles, and then ovaries. Results suggest fertilization and fruit set of pollinated rabbiteye blueberries can be greatly impaired by even mild freezes (-1 to -2 °C), whereas, appropriately timed applications of GA3 can result in little reduction in fruit set even after moderate freezes (-3 to -4 °C) of blueberries during bloom. Chemical name used: gibberellic acid (GA3).

Free access

Although differential thermal analysis has been routinely used to evaluate cold hardiness, the relationship of deep supercooling ability and plant survival are not well understood. In this study, we compared the seasonal profiles of changes in low-temperature exotherm (LTE) occurrence with visually determined cold hardiness of Acer rubrum L. `Armstrong', Fraxinus americana L. `Autumn Purple' and Zelkova serrata (Thunh.) Mak. `Village Green' growing in three locations representing plant cold hardiness zones 8b, 7b, and 5a. Between December and February, LTEs in Acer rubrum `Armstrong' and Fraxinus americana `Autumn Purple' occurred at temperatures around 10 to 25C lower than the lowest survival temperatures. The mean difference between LTEs and lowest survival temperature was not significant for Zelkova serrata `Village Green' from January to April and for Acer rubrum `Armstrong' and Fraxinus americana `Autumn Purple' in March. Data indicated that LTEs could be used as an estimate of lowest survival temperature in Zelkova serrata `Green Village' but not in Acer rubrum `Armstrong' and Fraxinus americana `Autumn Purple'. This study demonstrated that LTEs may not reliably estimate cold hardiness in all species that deep supercool. Factors other than freeze avoidance ability of xylem may limit stem survival at temperatures above the LTE.

Free access

On 1 May 2004, a 4 × 2 split-plot experiment was initiated in Athens, Ga., on Rhododendron ×kurume `Pink Pearl'. The four main-plot treatments were low irradiance, low irradiance May–October, low irradiance November–May, and high irradiance (high and low correspond to average daily PPF of 23.6 and 10.4 mol·m-2·d-1). The two subplot fall fertigation treatments were 75 mg·L-1 of nitrogen (N) and 125 mg·L-1 N. Plant stem tissue was harvested monthly from November to March, and analyzed for freeze resistance (LT50). Maximum quantum efficiency of PSII (Fv/Fm) was analyzed monthly with a Mini-pam photosynthesis yield analyzer. No interactions existed between fertilizer application and light intensity and the 125 mg·L-1 N fertilizer treatment reduced freeze resistance of azalea stems throughout the study. Fall fertilization had no effect on fluorescence and no interactions existed between fertilizer and irradiance treatments. In November, plants that received low irradiance May–October were less freeze-resistant than plants from the high-irradiance treatment. However, in January, plants that received low irradiance throughout the study were more freeze-resistant than plants that received the high-irradiance treatment. In November, Fv/Fm was higher in the low irradiance and low irradiance November–May treatments. In February and March, Fv/Fm was lower in the low May–November treatment that received low irradiance during summer than the low November–May treatment that received low winter irradiance. The use of shade to reduce irradiance may delay the acquisition of freeze resistance in fall. However, shade may reduce photosystem damage and increase a plants ability to acquire and maintain greater freeze resistance.

Free access

Optimizing growing conditions and, thereby, plant growth reduces the susceptibility of plants to many disease and insect pest problems. Educating lawn or landscape management professionals and homeowners about plant health management reduces the need for chemical intervention. Pesticides combined with N and P fertilizers contribute to water pollution problems in urban areas; thus, it is important to manage the amount, timing, and placement of chemicals and fertilizers. To educate consumers applying pesticides and fertilizers in residential gardens, we must educate the sales representatives and others who interact most closely with consumers. Evidence suggests that knowledge about the effects of chemicals is limited and that warning labels are not read or are ignored. Integrated pest management (IPM) offers alternatives to conventional chemical treatments, but such methods are not used commonly because of their relatively high cost and their uncertain impact on pests. Pest detection methods and using pest-resistant plants in landscapes are simple and, in many cases, readily available approaches to reducing the dependence on chemical use. Research on effective, low-cost IPM methods is essential if chemical use in landscape management is to decrease. Current impediments to reducing the pollution potential of chemicals used in the landscape include the limited number of easily implemented, reliable, and cost-effective alternative pest control methods; underfunding of research on development of alternative pest control measures; limited knowledge of commercial operators, chemical and nursery sales representatives, landscape architects, and the general public concerning available alternatives; reluctance of the nursery industry to produce, and of the landscape architects to specify the use of, pest-resistant plant materials; lack of economic or regulatory incentive for professionals to implement alternatives; inadequate funding for education on the benefits of decreased chemical use; and the necessity of changing consumer definition of unacceptable plant damage. We need to teach homeowners and professionals how to manage irrigation to optimize plant growth; use sound IPM practices for reducing disease, weed, and insect problems; and minimize pollution hazards from fertilizers and pesticides.

Full access

Pesticides have been the primary method of pest control for years, and growers depend on them to control insect and disease-causing pests effectively and economically. However, opportunities for reducing the potential pollution arising from the use of pesticides and fertilizers in environmental horticulture are excellent. Greenhouse, nursery, and sod producers are using many of the scouting and cultural practices recommended for reducing the outbreak potential and severity of disease and insect problems. Growers are receptive to alternatives to conventional pesticides, and many already use biorational insecticides. Future research should focus on increasing the effectiveness and availability of these alternatives. Optimizing growing conditions, and thereby plant health, reduces the susceptibility of plants to many disease and insect pest problems. Impediments to reducing the use of conventional pesticides and fertilizers in the environmental horticulture industry include 1) lack of easily implemented, reliable, and cost-effective alternative pest control methods; 2) inadequate funding for research to develop alternatives; 3) lack of sufficient educational or resource information for users on the availability of alternatives; 4) insufficient funding for educating users on implementing alternatives; 5) lack of economic or regulatory incentive for growers to implement alternatives; and 6) limited consumer acceptance of aesthetic damage to plants. Research and broadly defined educational efforts will help alleviate these impediments to reducing potential pollution by the environmental horticulture industry.

Full access