Search Results

You are looking at 21 - 27 of 27 items for

  • Author or Editor: Mark Ritenour x
Clear All Modify Search

The population densities of the brown citrus aphid (BrCA) (Toxoptera citricidus Kirkaldy) and the spirea aphid (SA) Aphis spiraecola Patch were monitored by scouting weekly for 6 years in a replicated citrus plot treated with 7 insect control regimes: Admire (imidacloprid) applied at 12, 6, 3, or 2 month intervals; Temik applied annually; Meta-Systox-R applied annually; or no insect control. The numbers of both aphid species varied greatly from month to month and year to year. The brown citrus aphid was normally only detected in the fall (August through December) with populations peaking in September, October, or December depending on the year. The spirea aphid could be detected throughout the year during years when overall populations were high. Spirea aphid populations often peaked both in the spring and fall. Annual applications of Temik or Metasystox were ineffective in reducing aphid populations. Generally, all four Admire treatment regimes controlled aphids, although at least 2 annual Admire treatments per year were required to control the spirea aphid during some years.

Free access

Avocado (Persea americana Mill.) is a high-value fruit that continues to increase in consumer demand. A population of ‘Hass’–‘Bacon’ hybrids was planted at USDA-ARS, Fort Pierce, as part of a study to find selections with good horticultural and postharvest quality traits for Florida. Extensive phenotypic data on quality were collected over 3 years. Ten selections were identified in 2014 and 2015 with promising fruit quality and postharvest shelf life characteristics and were tested in sensory panels using store-bought ‘Hass’ as the standard. In general, the selections had fruit quality similar to commercial ‘Hass’. Avocados that were most liked were described as creamy in texture with buttery and nutty flavor. Only one selection (R7T54 in 2014) and one store-bought control (‘Hass’ in 2015) were disliked, which was associated with greater firmness at the time of evaluation, likely relating to insufficient postharvest conditioning. Furthermore, CA ‘Hass’ commercial requirements for minimum dry matter (20.8%) were generally achieved by these selections under Florida conditions, ranging from 18.4% to 25.7%. This study identified 10 selections with composition and sensory quality similar to ‘Hass’ that are suitable for further testing and development in Florida.

Free access

The effect of controlled-release chlorine dioxide (ClO2) gas on the safety and quality of grapefruit was studied. The experiments were run under controlled chamber systems with inoculated fruit, and in boxed fruit under commercial conditions. For the inoculation test, fruit artificially inoculated with either Escherichia coli or Penicillium digitatum, or naturally inoculated Xanthomonas citri ssp. citri (Xcc) (fruits with citrus canker lesions), were incubated in a chamber containing a dose equivalent to 0–60 mg·L−1 of pure ClO2 as an antimicrobial agent. After 24 hours, the microbial population on treated grapefruit was significantly reduced compared with that of control fruit: a dosage of 5 mg·L−1 completely inhibit the growth of E. coli and P. digitatum, but a dosage of 60 mg·L−1 was needed to completely kill Xcc. For the simulated commercial experiment, fruit were harvested in late Oct. 2015 passed through a commercial packing line, and packed in 29 L citrus boxes. ClO2 packets were attached to the top lids with the following five treatments: fast-release, slow-release, slow/fast-release combination (each containing 14.5 mg·L−1 of pure ClO2), double dose fast-release (containing 29 mg·L−1 of ClO2), and control. After 6 weeks of storage at 10 °C (to simulate storage and transportation) + 1 week of storage at 20 °C (to simulate retail marketing), the fruit quality was evaluated. The slow-release treatment at standard dose exhibited the best antimicrobial activity, reducing total aerobic bacterial count and yeast/mold count by 0.95 and 0.94 log colony-forming units (cfu)/g of fruit, respectively, and maintained the best visual, sensory, and overall quality. However, the higher dosage treatments resulted in phytotoxicity as evidenced by peel browning.

Free access

The prevalence of Huanglongbing (HLB) in Florida has forced growers to search for new management strategies to optimize fruit yield in young orchards and enable earlier economic returns given the likelihood of HLB-induced yield reductions during later years. There has been considerable interest in modifying orchard architecture design and fertilizer and irrigation management practices as strategies for increasing profitability. Our objectives were to evaluate how different combinations of horticultural practices including tree density, fertilization methods, and irrigation systems affect growth, foliar nutrient content, fruit yield, and fruit quality of young ‘Valencia’ sweet orange [Citrus sinensis (L.) Osbeck] trees during the early years of production under HLB-endemic conditions. The study was conducted in Fort Pierce, FL, from 2014 to 2020 on a 1- to 7-year-old orchard and evaluated the following treatments: standard tree density (358 trees/ha) and controlled-release fertilizer with microsprinkler irrigation (STD_dry_MS), high tree density (955 trees/ha) with fertigation and microsprinkler irrigation (HDS_fert_MS), and high tree density with fertigation and double-line drip irrigation (HDS_fert_DD). Annual foliar nutrient concentrations were usually within or higher than the recommended ranges throughout the study, with a tendency for decreases in several nutrients over time regardless of treatment, suggesting all fertilization strategies adequately met the tree nutrient demand. During fruit-bearing years, canopy volume, on a per-tree basis, was higher under STD_dry_MS (6.2–7.2 m3) than HDS_fert_MS (4.3–5.3 m3) or HDS_fert_DD (4.9–5.9 m3); however, high tree density resulted in greater canopy volume on an area basis, which explained the 86% to 300% increase in fruit yield per ha that resulted in moving from standard to high tree density. Although fruit yields per ha were generally greatest under HDS_fert_MS and HDS_fert_DD, they were lower than the 10-year Florida state average (26.5 Mg·ha−1) for standard tree density orchards, possibly due to the HLB incidence and the rootstock chosen. Although tree growth parameters and foliar nutrient concentrations varied in response to treatments, management practices that included high tree density and fertigation irrespective of irrigation systems produced the highest fruit yields and highest yield of solids. Soluble solids content (SSC) and titratable acidity (TA) were lower, and the SSC-to-TA ratio was highest under STD_dry_MS in 2016–17, with no treatment effects on quality parameters detected in other years. Both drip and microsprinkler fertigation methods sufficiently met tree nutrient demand at high tree density, but additional research is needed to determine optimal fertilization rates and better rootstock cultivars in young high-density sweet orange orchards under HLB-endemic conditions in the Indian River Citrus District.

Open Access

Rootstock significantly affected the development of stem-end rind breakdown (SERB) on `Valencia' and navel oranges (Citrus sinensis), but not `Ray Ruby' grapefruit (C. paradisi) or `Oroblanco' (C. grandis × C. paradisi), and affected postharvest decay on navel orange, `Ray Ruby' grapefruit, `Oroblanco' and one of two seasons (2002) on `Valencia' orange. In `Valencia' and navel oranges, fruit from trees grown on Gou Tou (unidentified Citrus hybrid) consistently developed low SERB. `Valencia' oranges on US-952 [(C. paradisi × C. reticulata) × Poncirus trifoliata] developed high levels of SERB in both years tested. Relative SERB of fruit from other rootstocks was more variable. Navel oranges, `Ray Ruby' grapefruit, and `Oroblanco' fruit from trees on Cleopatra mandarin (C. reticulata) rootstock consistently developed relatively low levels of decay, and in navel this level was significantly lower than observed from trees on all other rootstocks. In three of five trials we observed significant differences between widely used commercial rootstocks in their effects on postharvest SERB and/or decay. Given the expanding importance of sales to distant markets, it is suggested that evaluations of quality retention during storage be included when developing citrus rootstocks and scion varieties for the fresh market.

Full access

Studies were conducted between November 1999 and April 2003 to evaluate the effectiveness of compounds applied preharvest for reducing postharvest decay on many types of fresh citrus (Citrus spp.) fruit. Commercially mature fruit were harvested two different times after the compounds were applied, degreened when necessary, washed, waxed (without fungicide), and then stored at 50 °F (10.0 °C) with 90% relative humidity. Compared to control (unsprayed) fruit, preharvest application of benomyl or thiophanate-methyl resulted in significantly (P < 0.05) less decay of citrus fruit after storage in nine out of ten experiments, often reducing decay by about half. In one experiment, pyraclostrobin and phosphorous acid also significantly decreased total decay by 29% and 36%, respectively, after storage compared to the control. Only benomyl and thiophanate-methyl significantly reduced stem-end rot (SER; primarily Diplodia natalensis or Phomopsis citri) after storage, with an average of 65% less decay compared to the control. Though benomyl significantly reduced anthracnose (Colletotrichum gloeosporioides) in two of four tests with substantial (>20%) infection and phosphorous acid significantly reduced it once, thiophanate-methyl did not significantly reduce the incidence of anthracnose postharvest. The data suggests that preharvest application of thiophanate-methyl may reduce postharvest SER and total decay similar to preharvest benomyl treatments.

Full access

Grapefruit are well-adapted to arid and warm climatic conditions, but well-irrigated trees usually produce better-quality fruits. Because water is a major component of the fruits, there is a strong relationship between drought stress and fruits quality traits such as fruits size, external fruits color, and juice quality. The object of this study was to develop a computer model to predict postharvest external grapefruit color as a function of drought stress. During model development, drought stress was quantified using a concise water balance model based on crop evapotranspiration, precipitation, and irrigation. Data collected from Murcia, Spain, during the 2007 and 2008 growing seasons were used for model development, and the model was optimized by comparing model predictions and observations for each growing season. The root mean square error and Nash and Sutcliffe coefficient of efficiency (NSE) were used to evaluate model performance. Then, the model was evaluated with independent data collected from Florida during the 2005–06 growing season. A second-order polynomial relationship was found between external fruits color and drought stress, with less drought stress resulting in better external fruits color. Model optimization revealed good model performance for predicting external fruits color in Murcia, with NSE values of 0.975 and 0.979 for the 2007 and 2008 growing seasons, respectively. Model evaluation with the data from Florida showed that model predictions were reliable, with a NSE value of 0.984. A robust model to predict external grapefruit color as affected by drought stress was developed during the present study and could be potentially applied to supply information for suitable irrigation management of various grapefruit cultivars grown under different climatic conditions. Model performance could be confirmed by future research with data collection during further multiple seasons for different cultivars and a range of climatic conditions.

Open Access