Search Results

You are looking at 21 - 25 of 25 items for :

  • Author or Editor: Louise Ferguson x
  • HortScience x
Clear All Modify Search

A stepwise multiple regression analysis, using payment by processors as the dependent variable (Y) and numerous physical and chemical characteristics as the independent variables (X), demonstrated that the primary factor determining `Manzanillo' olive (Olea europaea L.) value at harvest was size. Optimal crop value correlated strongly with the combined percentage of standard, medium, large, and extra-large olives; R' values were 0.93***, 0.93***, and 0.42 (ns) in 1984, 1985, and 1986, respectively. As the harvest season progressed, increased percentages of olives within these size classifications, not weight increases of individual olives within the size categories, produced the increase in value. Individual olives within size categories maintained the same weight through the harvest season, regardless of tree crop load. The best criterion for predicting optimal harvest time “is the total percentage of standard, medium, large, and extra-large olives.

Free access

The California table olive (Olea europaea L.) industry relies exclusively on hand harvesting of its primary Manzanillo cultivar. Increased harvesting costs have intensified industry interest in identifying an abscission agent that can be used with developing mechanical harvesting technologies to increase removal rates. Table olives are harvested immature green at horticultural maturity but before physiological maturity. The goal of this research was to reevaluate the potential of ethylene-releasing compounds (ERCs) as olive-loosening agents and to screen additional candidates previously shown to accelerate citrus fruit abscission. Eleven compounds were screened at two separate table olive-growing sites (Fresno and Tehama counties) in California in September until Nov. 2006. Compounds were applied at various concentrations alone or in combination. Fruit detachment force (FDF) and percent fruit drop were measured and leaf loss assessed. Of the compounds evaluated, the ERC ethephon (2-chloroethyl phosphonic acid) and 1-aminocyclopropane-1-carboxylic acid were the most efficacious. In whole tree applications, concentrations of ethephon or 1-aminocyclopropane-1-carboxylic acid above 1000 mg·L−1 reduced FDF to less than 50% of the untreated control within 17 days, but leaf drop increased with increasing concentrations. Addition of 1-methylcyclopropene reduced efficacy of ethephon and delayed leaf drop. Monopotassium phosphate + ethephon (4% and 1000 mg·L−1, respectively) reduced FDF and leaf loss was equivalent to the ethephon alone treatment. Compounds such as methyl jasmonate, coronatine, dikegulac, MAXCEL, traumatic acid, and 5-chloro-3-methyl-4-nitro-1H-pyrazole were not efficacious.

Free access

Springtime flail mowing of row middles for weed control in California pistachio (Pistacia vera L.) orchards blows dust into the leafless canopy if it occurs during bloom. The effect of dust on pistachio pollination and fruit set is unknown. Rachises were bagged prebloom and hand pollinated with pollen and dust mixtures at 1:0, 1:1, 1:4, 1:16, and 0:1 volume/volume ratios on five successive days. The 2016 and 2017 trials demonstrated that the inflorescences treated with a high pollen:dust ratio (0:1, 1:4, and 1:16) had significantly lower split nut rates (commercially less profitable) compared with low dust ratio tests (1:0 and 1:1). Our results also showed that dust damaged both pollen viability and stigma quality, particularly if contaminated with herbicide residues (GlyStar® Plus and Treevix®). Decreased yield was a function of decreased fruit set; increased embryo abortion, parthenocarpy, or both; and a lower split nut percentage. The GA3 content in flowers of both the pollen and dust treatments was significantly higher than that in nonpollinated flowers, suggesting dust stimulated parthenocarpy, resulting in empty nutshells, “blanks” at harvest.

Free access

Knowing a tree crop’s seasonal growth and development as a function of heat accumulation can facilitate scheduling of irrigation, pesticide applications, and harvest. Our objective was to compare the goodness of fit of applied models and determine which provides the best description of pistachio nut growth as a function of thermal unit accumulation. Three fruit growth traits of pistachio—pericarp (hull) + endocarp (shell) size, endocarp thickening and hardening, and embryo (kernel) size—exhibited clear nonlinear dependence on heat accumulation. We tested three nonlinear models—Michaelis–Menten, three-parameter logistic, and Gompertz—fitted to fruit development data to create a tool to forecast pest susceptibility and harvest timing. Observation of development began at full bloom and ended at harvest. Data were collected from six pistachio cultivars in one experimental and eight commercial orchards over 3 years. Analyses of residual distribution, parameter standard errors, coefficient of determination (R 2) and the Akaike information criterion (AIC) all demonstrated the Gompertz function was the best model. Cultivars differed significantly in all the three parameters (Asym, b, and c) for all three traits with the Gompertz model, demonstrating the Gompertz model can adjust to incorporate cultivar differences. The growth curve of the three traits together provided integrated information on nut biomass accumulation that facilitates predicting the critical timing for multiple orchard management practices.

Open Access

Pecan [Carya illinoinensis (Wangenh.) K. Koch] is a member of the Juglandaceae family. During spring, pecan trees break their bud dormancy and produce new leaves and flowers. Carbohydrates stored in roots and shoots are thought to support the bloom and early vegetative growth during this time until new leaves start the full photosynthetic activity. Spring freeze is known for its damaging effects on pecan bud and flower growth and development. Pecan shoots with leaves and flowers from five scion–rootstock combinations were collected hours before and after a recent spring freeze (below 0 °C for 6 hours, 21 Apr 2021, Perkins, OK, USA). Morphologies of the leaf, bud, and catkin were visually observed, and the morphologies of the anther and pollen in paraffin sections were investigated by light microscopy. Soluble sugar and starch from bark and wood were analyzed using the anthrone reagent method. The Kanza–Mount showed the maximum damage to terminal leaves, buds, and catkins, whereas Maramec–Colby had the minimum damage only to leaves. Pollen grains were shrunk and reduced in number in the anthers in the protandrous Pawnee scions, whereas no pollen damage was observed in the protogynous Kanza scion. Furthermore, bark soluble sugar levels increased in all the scion–rootstock combinations after the freeze, which may indicate a physiological response to the cold stress. Overall, the extent of spring freeze damage of pecans is affected by the growth stage, types of scion and rootstock, and the scion–rootstock interactions. Furthermore, in addition to low temperature, scion–rootstock interactions also affected the starch and soluble sugar contents in wood and bark tissues.

Open Access