Search Results

You are looking at 21 - 30 of 30 items for

  • Author or Editor: Leonard M. Pike x
Clear All Modify Search

Sucrose, fructose, total sugars and soluble solids are major factors in determining mature melon fruit sweetness. Bulked segregant analysis was utilized to detect RAPD markers associated with QTL for sucrose, total sugars and soluble solids in an F2 population from the ananas melon cross of Deltex (high sugars) × TGR1551 (low sugars). Sucrose, glucose, fructose and total sugar data were obtained from 108 F2 plants by means of HPLC. Clear separations for sucrose, total sugars and soluble solids between Deltex and TGR1551 were observed, whereas slight differences for glucose and fructose were found. Continuous distributions for sucrose, total sugars and soluble solids were observed in the F2 population indicating quantitative inheritance for the sweetness traits. A significant negative correlation was observed between sucrose and glucose (r = -25) or fructose (r = -0.31). A significant positive correlation was noted between sucrose and total sugars (r = 0.80) or soluble solids (r = 0.64). Three low and high DNA bulk pairs for sucrose, total sugars and soluble solids were developed. A total of 360 primers were used to simultaneously screen between the low and high bulks, and between Deltex and TGR1551. Sixty-eight RAPD markers were polymorphic for the low and high bulks. Of the 68 markers, 24 were found to be significantly associated with sucrose, total sugars or soluble solids on the basis of single-factor ANOVA. Marker OM15.550 was consistently associated with QTL affecting sucrose, glucose, fructose, total sugars and soluble solids, and accounted for 7% to 25% of the phenotypic variation for the traits. These markers associated with the sugar synthesis QTL could be useful to transfer these genes into a low sugar cultivar to enhance the fruit sweetness.

Free access

Orange juice is an important source of bioactive compounds like flavonoids and the main human dietary source of antioxidant compounds in developed countries. Citrus flavonoids possess chemo-preventive and anti-inflammatory properties as well as the ability to lower cholesterol and modulate the immune function. In this study, we examined flavonoid content of “concentrated” (n = 12) and “Not-From Concentrate (NFC)” (n = 14) commercial orange juices by an HPLC method to investigate the brand to brand differences and differences within the brand (various types). Correlation between flavanonoid content (mg) and price per unit volume was also evaluated. Significant (P = 0.05) differences among the brands were observed in the flavanoid content of both NFC and concentrated orange juices. Total flavonoid content was significantly higher in concentrated juices compared to the NFC juices. However, higher content of didymin was found in NFC juices. Within the brand, no significant differences in the total flavonoid content were observed in juice types containing antioxidant vitamins compared to the juice types devoid of these vitamins. Price did not correlate with the total flavonoid content for either NFC (r = 0.057) or concentrated (r = -0.49) orange juices. Hesperidin was the major flavonoid and followed by narirutin and didymin. Their content (mg/100 mL) in concentrated and NFC juices ranged between 18-55 (Hesperidin); 3-8 (narirutin); and 1-2.5 (didymin), respectively. This study provides valuable information on flavonoid composition of orange juices commonly available in the US market.

Free access

Thrips are the major insect pest of onions grown in South Texas. Four cultivars, `IPA-3', `TG1015Y', `1664' (glossy control), and `1900B' (waxy control), were grown in a split-plot design with insecticide sprayed or nonsprayed treatments as the main plots and cultivar as the subplots. The experiment was conducted at the Texas Agricultural Experiment Station, Weslaco, Texas, in the 1995-96 season. The objectives of the study were to compare `IPA-3' and `TG1015Y' for thrips resistance and evaluate possible resistance mechanisms that may be present in `IPA-3'. The average number of thrips per plant and leaf damage rating were significantly higher for `TG1015Y', indicating that some resistance is present in `IPA-3'. However, there were no significant differences in yield between the two cultivars. A comparison of leaf wax characteristics indicated no significant difference between `TG1015Y' and `IPA-3' using gravimetric or gas chromatography techniques. However, scanning electron micrographs of `TG1015Y' leaves appeared more similar to `1900B' and `IPA-3' appeared more similar to `1664'. The insecticide spray treatment had significantly fewer thrips, less damage, and higher yield than the nonsprayed treatment.

Free access

Onions suffer from severe inbreeding depression, which has inhibited the development of homozygous inbred lines in breeding programs. The creation of doubled haploid (DH) lines in onion provides a unique opportunity to evaluate the utility of such lines as parents in a breeding program. For this purpose, two diallele cross experiments were conducted. The first consisted of a six-parent diallele cross using six DH lines developed at Texas A&M University. The second, a four-parent diallele cross performed with two DH lines and two inbred lines from the breeding program. Bulbs from the various crosses were evaluated for diameter, height, centers/bulb, ring thickness, number of rings/bulb, bulb weight, soluble solids content, and pungency. For some traits, general combining ability (GCA) effects explained most of the variation. However, for other traits, specific combining ability (SCA) effects predominated. For all traits, GCA and SCA were always larger than the reciprocal effects (divided into maternal and nonmaternal components). The GCA and SCA effects show an inverse correlation between the number of centers/bulb and ring thickness.

Free access

Two of Asgrow's experimental virus resistant transgenic lines, XPH-1719 and XPH-1739, and their parental line, Pavo, a commercially grown virus susceptible hybrid, were tested for field performance at the Texas A&M University Experimental Farm in the summer of 1993. The two transgenic squash lines possessed the desired fruit and plant characteristics of Pavo plus resistance to ZYMV and WMV2 (XPH-1719), and resistance to ZYMV, WMV2 and CMV (XPH-1739). Under the conditions of this test it was determined that the two transgenic hybrids, were equally effective in producing high quality marketable fruits/ha with 89.64 % and 86.84 % respectively and marketable yields with 13,762 kg/ha and 16,525 kg/ha respectively. XPH-1719 and XPH-1739 also demonstrated their outstanding virus resistance by producing only 3.44% and 14.35% symptomatic plants/ha, and 0.00% and 7.17% infected fruits/ha respectively compared to 53.55% symptomatic Pavo plants/ha, and 25.73% infected Pavo fruits/ha.

Free access

Triploid or seedless watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] cultivars often have erratic germination and low seedling vigor. The morphology of the seedcoat on two triploid cultivars—Tri X 313 and Tri X Sunrise—was examined by scanning electron microscopy (SEM) to identify structural differences compared to diploid seeds. Triploid seeds incubated with oxygen-enhanced treatments that included nicking, 1% hydrogen peroxide (H2O2), and 40% oxygen were investigated at low and high medium moisture levels. Triploid seed has a thicker seedcoat with a dense endotesta layer and a larger and highly variable air space surrounding the embryonic axis as compared with diploid seed. All cultivars rapidly imbibed water (≈50% of the original weight) during the first hour of imbibition, with a faster increase for triploids than for diploids. High moisture affected germination to a lesser extent in diploid than triploid seeds. Triploid germination under low medium moisture ranged from 96% to 76%, but was severely reduced to <27% under high medium moisture. Triploid seed germination was significantly improved at high moisture by H2O2 and by 40% oxygen. Triploid watermelon seed is very sensitive to submerged conditions, possibly due to a combination of physiological and morphological defects. The rapid imbibition and excess water collected in the seedcoat and air space surrounding the embryo, could reduce oxygen diffusion and impair metabolic pathways leading to normal germination and seedling development.

Free access

Baby-style carrot Daucus carota Mill. cv. Caropak was studied under four population densities, three different numbers of lines per bed, and harvested under three root size harvest parameters in the Rio Grande Valley of Texas. Four phases in the baby-style carrot process were evaluated. Length of the roots at harvest and projected values for total waste and marketable yield were estimated. Length was affected by root size at harvest, the most desirable root length occurred when harvested at 25%-35% roots diameter >2 cm. The longer roots (16.55 cm) were in the treatments with 6 seed lines per bed and 197 plants/m2. Population density affected the fresh and cut weight in the baby-style carrots process with the highest weight at 321 plants/m2. Percent of cut waste was the same at the three-root size at harvest with 21.65% of crowns and tips cut. The percent of graded waste was lowest when harvested at the biggest root size, 14.23% and four seed lines per bed produced the highest waste with 18.14. Seed lines per bed affected the quality of the roots in the graded step. Based on a 40% peeling waste projection the lowest total waste was estimated at 59.69% and the highest projected marketable yield of 19.4 t/ha of final product when roots were harvested using the 25%-35% root diameter parameter. Root size at harvest is the main factor affecting projected marketable yield of baby-style carrots in South Texas.

Free access

Eight individual potatoes, exhibiting a wide range of quality characteristics, were cloned at the Texas A&M Vegetable Improvement Center, College Station, Tex., in order to produce a large number of slips for field trials. Leaf photosynthetic light response for six of these clonal selections was determined during a greenhouse experiment conducted at the Texas A&M Univ. Agricultural Research and Extension Center at Overton, Tex. Photosynthesis data were fit to a rectangular hyperbola in order to estimate light saturated leaf photosynthetic rate (Amax), quantum efficiency (QE), and dark respiration rate (Rd). Significant differences (P ≥ 0.05) were detected in all three of these parameter estimates among the six clonal selections. Parameter estimates ranged from 23.4 to 28.8 μmol (CO2) m-2·s-1, 0.056 to 0.071 mol (CO2)/mol (photons), and –0.9 to –2.0 μmol (CO2) m-2·s-1 for Amax, QE, and Rd, respectively. However, these differences were not clearly related to quality characteristics determined for these clones in field trials.

Free access

Carrot (Daucus carota Mill. cv. Caropak) was studied under four population densities, and three numbers of seed lines per bed, and was harvested under three root size harvest parameters. Four phases (cutting, grading, peeling, and marketable yield) in the cut-and-peel baby carrot process were evaluated. Root length was most desirable when plots were harvested when 25% to 35% of the roots measured > 2 cm in diameter. Roots were longest (14.7 cm) in the treatments containing six seed lines per bed. The harvest criteria of 25% to 35% root diameter >2 cm also produced the highest fresh mass (48.1 t·ha-1), and the highest cut and graded mass (37.7 and 32.3 t·ha-1, respectively). A population density of 321 plants/m2 produced the highest fresh and cut mass. Percent cut waste (21.6% crowns and tips) was not affected by root size at harvest, but percent graded waste was lowest (14.2%) when plants were harvested at the greatest root size. Four seed lines per bed produced the highest graded (18.4%), and total waste (61.2%), but not cut waste. The lowest total waste, estimated at 59.7% and the highest projeced marketable yield (19.4 t·ha-1) occurred when roots were harvested using the 25% to 35% root diameter >2-cm parameter. Total waste and marketable yield were obtained using a fixed waste value of 40% in the peeling phase (peeling, polishing, and grading before packing). This percentage could vary depending on the equipment specifications and quality control of a given processing facility. Root size at harvest proved to be the main factor affecting projected marketable yield of cut-and-peel baby carrots at the population densities used in this study.

Free access

Carrot (Daucus carota Mill. cv. Caropak) was studied under four population densities, and three numbers of seed lines per bed, and was harvested under three root size harvest parameters. Four phases (cutting, grading, peeling, and marketable yield) in the cut-and-peel baby carrot process were evaluated. Root length was most desirable when plots were harvested when 25% to 35% of the roots measured >2 cm in diameter. Roots were longest (14.7 cm) in the treatments containing six seed lines per bed. The harvest criteria of 25% to 35% root diameter >2 cm also produced the highest fresh mass (48.1 t·ha-1), and the highest cut and graded mass (37.7 and 32.3 t·ha-1, respectively). A population density of 321 plants/m2 produced the highest fresh and cut mass. Percent cut waste (21.6% crowns and tips) was not affected by root size at harvest, but percent graded waste was lowest (14.2%) when plants were harvested at the greatest root size. Four seed lines per bed produced the highest graded (18.4%), and total waste (61.2%), but not cut waste. The lowest total waste, estimated at 59.7% and the highest projected marketable yield (19.4 t·ha-1) occurred when roots were harvested using the 25% to 35% root diameter >2-cm parameter. Total waste and marketable yield were obtained using a fixed waste value of 40% in the peeling phase (peeling, polishing, and grading before packing). This percentage could vary depending on the equipment specifications and quality control of a given processing facility. Root size at harvest proved to be the main factor affecting projected marketable yield of cut-and-peel baby carrots at the population densities used in this study.

Full access