Search Results

You are looking at 21 - 30 of 36 items for

  • Author or Editor: Kimberly A. Williams x
Clear All Modify Search

Soilless root media have little capacity to retain PO4 or K, and this contributes to leaching of these nutrients during greenhouse crop production. The objective of this research was to evaluate the suitability of precharged alumina as a sole source of PO4 and K during greenhouse production of potted chrysanthemum [Dendranthema ×grandiflora Kitam. (syn. Chrysanthemum ×morifolium Ramat.)]. Phosphate and K adsorption and desorption curves were created at 25 °C for two particle sizes (0.5 to 0.9 and 1.8 to 3.2 mm) of alumina (Al2O3; acid-washed and unwashed), and a medium of 7 peat: 3 perlite (v/v) using solutions of KH2 PO4 (P at 0 to 20,000 mg.L-1). Based on these curves, 1.8 to 3.2 mm, unwashed alumina was selected for use in the studies. Precharged alumina was tested in two greenhouse studies at 10% and 30% (v/v) of a peat-perlite medium used to produce `Sunny Mandalay' chrysanthemum. Phosphate, K, and pH were determined on unaltered root medium solutions collected throughout the 10-week cropping cycle, and foliar analyses were conducted on tissue collected at the middle and end of the cycle. Potassium release was adequate to meet chrysanthemum demand for 4 weeks, but inadequate for the remainder of the production cycle. Precharged alumina retained and released PO4 at sustained concentrations (P at <2 mg·L-1) over the course of a 10-week cropping cycle. Growth of plants receiving PO4 from precharged alumina was not significantly different from the controls receiving liquid fertilizer (P at 46.5 mg·L-1) at each watering when precharged alumina comprised 30% of the medium, and only slightly less when precharged alumina comprised 10% of the medium. A phosphorus budget showed that while 36% (103 mg) of the applied PO4-P was lost in the leachate of the controls, only 0.1% (2 mg) was lost from plants produced with alumina-P. This research demonstrates that in a soilless medium with physical properties similar to standard commercial mixes, low but adequate PO4 concentrations can be achieved and sustained using current production practices.

Free access

Case studies promote the development of problem-solving skills, but few have been created for horticulture and related curricula. This web-based decision case presents the challenge of determining the cause of symptoms of foliar chlorosis in a crop of cut Dicentra spectabilis while forcing it for Valentine's Day sales. It provides a tool to promote the development of diagnostic skills for production dilemmas, including nutritional disorders, disease and insect problems, and evaluation of the appropriateness of cultural practices. Cut Dicentra is a minor crop and standard production practices are not well established. Therefore, solving this case requires that students research production protocol as well as nutritional and pest problems to develop a solution. In this case study, which is supported by an image-rich web-based version at www.hightunnels.org/cutflowercasestudy.htm, a grower at Flint's Flower Farm must determine the cause of foliar chlorosis that is slowly appearing on about half of the plants of her cut Dicentra crop. The condition could be related to a number of possible problems including a nutritional disorder, insect attack, disease infection, or production practices. Some resources are provided to aid students in gathering background information. Data accumulated by the grower is presented to allow students to logically eliminate unlikely solutions and predict (a) probable cause(s). The solution, which is rather unique to this crop, is provided. This case study is intended for use in upper-level undergraduate courses of floriculture production, nutrient management, plant pathology, and entomology.

Free access

The effects of overhead and drip tube irrigation on twospotted spider mite (TSMs) (Tetranychus urticae Koch) and predatory mite (PMs) (Phytoseiulus persimilis Athias-Henriot) populations, as well as the biological control of TSMs by PMs, were investigated on Impatiens wallerana Hook. f. `Impulse Orange'. To determine the effects of the two irrigation methods on TSM populations, plants were inoculated with female TSMs 6 weeks after seeding. Plants were then irrigated twice every three days, and TSM counts were taken 3 weeks later. To assess the effects of irrigation method on PMs, plants were inoculated with TSMs 6 weeks after seeding, PMs were released 10 days later, plants were irrigated about once per day, and the number of predatory mites on plants was counted 3 weeks after release. To assess the effects of irrigation method on the biological control of TSMs by PMs, plants were inoculated with TSMs and PMs were released as before, but then plants were irrigated either three times every 2 days or three times every 4 days using either drip or overhead irrigation. The number of TSMs on plants and the number of leaves showing TSM feeding injury were measured 3 weeks after predator release. Overhead watering significantly reduced TSM and PM populations as much as 68- and 1538-fold, respectively, compared to drip irrigation with microtubes. Perhaps more important, overhead watering with or without predators significantly reduced the number of leaves sustaining TSM feeding injury as much as 4-fold compared to drip irrigation. These results confirm the common observation that TSM infestations and injury may be reduced by irrigation systems that wet plant foliage. However, predators still reduced TSMs even though overhead irrigation had a suppressive effect on predatory mites. Predators are particularly useful for reducing TSM injury when plants are watered infrequently. Overhead watering could be used in tandem with biological control as a component of an integrated crop management program for TSMs in ornamental greenhouses by rapidly lowering TSM population levels in hot spots before PMs are released.

Free access

Greenhouse experiments were conducted to determine the response of Brassica oleracea L., pac choi to fertilizer rates and sources and to establish optimal soluble nitrogen (N) application rates and nitrate meter sufficiency ranges. Conventional soluble fertilizer was formulated from inorganic salts with a 4:1 NO3-N:NH4-N ratio. Phosphorus (P) was held at 1.72 mm and potassium (K) at 0.83 mm for all treatment levels. The organic soluble fertilizer, fish hydrolyzate (2N–1.72P–0.83K), was diluted to provide the same N levels as with conventional treatments. Both fertilizers were applied at N rates of 0, 32, 75, 150, 225, 300, and 450 mg·L−1. Seedlings were transplanted and fertilizer application began at 18 days. Plants were harvested at 7 weeks (5 weeks post-transplanting) after receiving 15 fertilizer applications during production. Samples of the most recently matured leaves were harvested weekly and analyzed for petiole sap NO3-N and leaf blade total N concentration. Leaf count, leaf length, and chlorophyll content were also measured weekly. Fresh and dry weights were determined on whole shoots and roots. Optimum yield was achieved at the 150-mg·L−1 fertility rate with both conventional and organic fertilizers. Field and high tunnel experiments were conducted to validate the sufficiency ranges obtained from the greenhouse studies. Sufficiency levels of NO3-N for pac choi petiole sap during Weeks 2 to 3 of production were 800 to 1500 mg·L−1 and then dropped to 600 to 1000 mg·L−1 during Weeks 4 through harvest for both conventional and organic fertilizers sources. Total N in leaf tissue was less responsive to fertilizer rate effects than petiole sap NO3-N. Chlorophyll content was not useful in evaluating pac choi N status. These guidelines will provide farmers with information for leaf petiole sap NO3-N to guide in-season N applications.

Free access

Host-plant nutritional status may affect the incidence and development of western flower thrips (WFT; Frankliniella occidentalis Pergande). Two greenhouse experiments were conducted to determine the responses of WFT population levels on impatiens (Impatiens wallerana Hook.f.) when plants were fertilized with commercially practiced rates of nitrogen (N) and phosphorus (P). Impatiens `Dazzler Violet' were grown with nutrient treatment combinations of 2 N rates (8 and 20 mm) by 2 P rates (0.32 and 1.28 mm). Individual plants grown in thrips-proof cages were inoculated with WFT at 2 or 4 weeks after transplant, in separate experiments, representing vegetative or reproductive stages of plant growth, respectively. Plants were destructively sampled weekly for 4 weeks following inoculation. Plant tissue N and P concentrations were significantly different across treatments: 8 and 20 mm N resulted in 4.9% and 6.3% N in tissue, respectively; 0.32 and 1.28 mm P resulted in 0.37% and 0.77% P in tissue, respectively. Nitrogen rates had no effect on WFT population levels. However, 4 weeks after inoculation with adult female WFT during the vegetative growth stage, plants fertilized with 1.28 mm P had more adult WFT than those fertilized with 0.32 mm P. Feeding damage varied depending on whether plants were inoculated in the vegetative stage with adult WFT or during reproductive growth with immature WFT. Plant size and number of flowers were lower in plants inoculated during the vegetative growth stage with adult WFT but were not affected when inoculation with immature WFT occurred during the reproductive stage, as most WFT were found feeding inside the nectariferous spurs of the flowers. Tissue N was lower in WFT-inoculated plants compared to noninoculated plants in both experiments.

Free access

Growers have indicated that changes in soil quality under production in high tunnels is an important problem, but these have not yet been quantified or critically assessed in the central Great Plains of the United States. We conducted surveys of grower perceptions of soil quality in their tunnels (n = 81) and compared selected soil quality indicators (salinity and particulate organic matter carbon) under high tunnels of varying ages with those of adjacent fields at sites in Kansas, Missouri, Nebraska, and Iowa in the United States. Fourteen percent of growers surveyed considered soil quality to be a problem in their high tunnels, and there were significant correlations between grower perceptions of soil quality problems and reported observations of clod formation and surface crusting and to a lesser extent surface mineral deposition. Grower perception of soil quality and grower observation of soil characteristics were not related to high tunnel age. Soil surface salinity was elevated in some high tunnels compared with adjacent fields but was not related to time under the high tunnel. In the soil upper 5 cm, salinity in fields did not exceed 2 dS·m−1 and was less than 2 dS·m−1 under 74% of high tunnels and less than 4 dS·m−1 in 97% of high tunnels. The particulate organic matter carbon fraction was higher in high tunnels than adjacent fields at 73% of locations sampled. Particulate organic matter carbon measured 0.11 to 0.67 g particulate organic matter per g of the total carbon under high tunnels sampled. Particulate organic matter carbon in the soil was also not correlated to age of high tunnel. Soil quality as measured in this study was not negatively impacted by use of high tunnel structures over time.

Free access

Intumescences are a physiological disorder characterized by hypertrophy and possibly hyperplasia of plant tissue cells. Ultimately, this disorder results in the death of the affected cells. Previous observations and research suggest that the quality and quantity of light to which plants are exposed may be a factor in development of the disorder. The purpose of this study was to assess the preventive effect of ultraviolet-B (UVB) radiation on intumescence development in ornamental sweetpotato (Ipomoea batatas). Two sweetpotato cultivars, Sidekick Black and Ace of Spades, were grown under light treatments consisting of 1) normal greenhouse production conditions; 2) supplemental UVB lighting; 3) supplemental UVB lighting with Mylar® sleeves over the lamps to block UVB radiation; and 4) control lighting with full spectrum lamps. Treatments were administered for 2 weeks, and the experiment was repeated twice. ‘Ace of Spades’ was highly susceptible to intumescence development, whereas ‘Sidekick Black’ was much less susceptible to the disorder. For ‘Ace of Spades’, the addition of UVB radiation significantly reduced the number of leaves affected with intumescences when compared with plants grown under the other light treatments; this UVB effect was not apparent for ‘Sidekick Black’. Furthermore, there was no evidence for reduced plant growth under UVB light in either cultivar, but side effects from the radiation included leaf discoloration and deformities. This study indicates a cultivar-specific effect of UVB light in preventing intumescence development on ornamental sweetpotato, therefore suggesting a potential genetic component in intumescence susceptibility. These results provide further insight in better understanding intumescence development and how to prevent the disorder.

Free access

Biological and chemical control strategies for the twospotted spider mite (TSM; Tetranychus urticae) were evaluated in a greenhouse experiment replicated over time in mixed production of ivy geranium (Pelgargonium peltatum ‘Amethyst 96’) and two impatiens cultivars (Impatiens wallerana ‘Impulse Orange’ and ‘Cajun Carmine’). Chemical control using the miticide bifenazate was compared with two release strategies for biological control using the predatory mite, Phytoseiulus persimilis. Specific treatments included 1) a single application of bifenazate at 0.3 g·L−1 formulation (22.6% a.i.); 2) a single release of predatory mites at a 1:4 predator to pest ratio based on sampled pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. TSM populations were monitored for 4 weeks. After another 4 weeks, when plants were ready for market, plant quality ratings were recorded. The number of TSM per leaf dropped for all treatments on all genotypes but increased in the untreated plants. On ivy geranium, the fact that there were significantly more TSM on untreated plants was not reflected in average plant quality, but it did reduce the proportion of containers rated as salable at full price compared with both chemical and biological control. On impatiens, both treatment and cultivar had significant effects on the mean plant quality rating and on the proportion of containers rated as salable at full price. The use of a sampling plan to determine the appropriate number of predators to release was as effective as the currently recommended management treatments for TSM in bedding plants.

Full access

Plants in the interiorscape have many documented benefits, but their potential for use in conjunction with mechanical heating, ventilation, and air conditioning (HVAC) systems to humidify dry indoor environments requires more study. In this research, evaporation and evapotranspiration rates for a root medium control, variegated spider plants (Chlorophytum comosum), and green jade plants (Crassula argentea) were measured over 24 hours at 25% and 60% relative humidity (RH) and 20 °C to generate data for calculation of the leaf surface area and number of plants necessary to influence indoor humidity levels. Evaporation and evapotranspiration rates were higher for all cases at 25% RH compared with 60% RH. At 25% RH during lighted periods, evapotranspiration rates were ≈15 g·h−1 for spider plants and 8 g·h−1 for jade plants. Spider plants transpired during lighted periods due to their C3 photosynthetic pathway, whereas jade plants had greater evapotranspiration rates during dark periods—about 11 g·h−1—due to their crassulacean acid metabolism (CAM) photosynthetic pathway. A combination of plants with different photosynthetic pathways (i.e., C3 and CAM combination) could contribute to greater consistency between evapotranspiration rates from day to night for humidification of interior spaces. Using the measured data, calculations indicated that 32,300 cm2 total spider plant leaf surface area, which is 25 spider plants in 4-inch-diameter pots or fewer, larger plants, could increase the humidity of an interior bedroom from 20% RH to a more comfortable 30% RH under bright interior light conditions.

Full access

This universally accessible, Web-based decision case presents the challenge of determining the cause of foliar chlorosis in a crop of dicentra (Dicentra spectabilis) being forced as a cut flower for Valentine's Day sales. The case study serves as a tool to promote the development of diagnostic skills for production dilemmas, including nutritional disorders, disease problems, and evaluation of the appropriateness of cultural practices. Cut dicentra is a minor crop and standard production practices are not well established. Solving this case requires that students research production protocol, as well as nutritional and pest problems, and determine whether they have enough information to recommend a solution. In this case study, a grower at Flint's Flower Farm must determine the cause of foliar chlorosis that is slowly appearing on about half the plants of her cut dicentra crop. The condition could be related to a number of possible problems, including a nutritional disorder, disease infection, or production practices. Resources are provided to aid students in gathering background information. Data accumulated by the grower are presented to allow students to eliminate unlikely solutions logically. The solution, which is unique to this crop, is provided along with detailed objectives and discussion points in teaching notes. This case study is complex in nature and is intended for use with advanced students in upper-level undergraduate courses of floriculture production, nutrient management, and plant pathology who have been previously exposed to the diagnostic process.

Full access