Search Results

You are looking at 21 - 30 of 34 items for

  • Author or Editor: Kimberly A. Williams x
Clear All Modify Search
Free access

Marci Spaw, Kimberly A. Williams*, Ingrid L. Mallberg, Laurie Hodges and Ellen T. Paparozzi

Case studies promote the development of problem-solving skills, but few have been created for horticulture and related curricula. This web-based decision case presents the challenge of determining the cause of symptoms of foliar chlorosis in a crop of cut Dicentra spectabilis while forcing it for Valentine's Day sales. It provides a tool to promote the development of diagnostic skills for production dilemmas, including nutritional disorders, disease and insect problems, and evaluation of the appropriateness of cultural practices. Cut Dicentra is a minor crop and standard production practices are not well established. Therefore, solving this case requires that students research production protocol as well as nutritional and pest problems to develop a solution. In this case study, which is supported by an image-rich web-based version at www.hightunnels.org/cutflowercasestudy.htm, a grower at Flint's Flower Farm must determine the cause of foliar chlorosis that is slowly appearing on about half of the plants of her cut Dicentra crop. The condition could be related to a number of possible problems including a nutritional disorder, insect attack, disease infection, or production practices. Some resources are provided to aid students in gathering background information. Data accumulated by the grower is presented to allow students to logically eliminate unlikely solutions and predict (a) probable cause(s). The solution, which is rather unique to this crop, is provided. This case study is intended for use in upper-level undergraduate courses of floriculture production, nutrient management, plant pathology, and entomology.

Full access

Eric W. Kerschen, Caleb Garten, Kimberly A. Williams and Melanie M. Derby

Plants in the interiorscape have many documented benefits, but their potential for use in conjunction with mechanical heating, ventilation, and air conditioning (HVAC) systems to humidify dry indoor environments requires more study. In this research, evaporation and evapotranspiration rates for a root medium control, variegated spider plants (Chlorophytum comosum), and green jade plants (Crassula argentea) were measured over 24 hours at 25% and 60% relative humidity (RH) and 20 °C to generate data for calculation of the leaf surface area and number of plants necessary to influence indoor humidity levels. Evaporation and evapotranspiration rates were higher for all cases at 25% RH compared with 60% RH. At 25% RH during lighted periods, evapotranspiration rates were ≈15 g·h−1 for spider plants and 8 g·h−1 for jade plants. Spider plants transpired during lighted periods due to their C3 photosynthetic pathway, whereas jade plants had greater evapotranspiration rates during dark periods—about 11 g·h−1—due to their crassulacean acid metabolism (CAM) photosynthetic pathway. A combination of plants with different photosynthetic pathways (i.e., C3 and CAM combination) could contribute to greater consistency between evapotranspiration rates from day to night for humidification of interior spaces. Using the measured data, calculations indicated that 32,300 cm2 total spider plant leaf surface area, which is 25 spider plants in 4-inch-diameter pots or fewer, larger plants, could increase the humidity of an interior bedroom from 20% RH to a more comfortable 30% RH under bright interior light conditions.

Free access

Joshua K. Craver, Chad T. Miller, Kimberly A. Williams and Daniel L. Boyle

Many plant species are prone to physiological disorders in which lesions develop on the leaf tissue. Nomenclature for such lesions has included intumescences, excrescences, neoplasms, galls, genetic tumors, enations, and oedemata. Interchangeably using these terms causes confusion as to whether these names refer to the same or different disorders. Two of the most commonly used names are oedema and intumescence. The objective of this research was to characterize the development of lesions on ornamental sweetpotato (Ipomoea batatas ‘Blackie’), tomato (Solanum lycopersicum ‘Maxifort’), interspecific hybrid geranium (Pelargonium × ‘Caliente Coral’), and bat-faced cuphea (Cuphea llavea ‘Tiny Mice’) to determine similarities and differences in morphology and nomenclature among these physiological disorders. Light microscopy was used to characterize differences in cross-sectional height, width, and area of lesions on each species. Additionally, leaf tissue samples were embedded in paraffin, and 10-μm cross-sections were stained with Toluidine blue O and observed using light microscopy to identify specific cell layers involved with lesion development. Field emission scanning electron microscopy (SEM) and digital photography were used to observe the microscopic and macroscopic stages of lesion development, respectively, on each species. The lesions observed on ornamental sweetpotato were significantly greater in height and area than on the other three species, whereas tomato lesions were significantly greater in width. Lesions on ornamental sweetpotato and bat-faced cuphea occurred predominantly on the adaxial surface of the leaf, whereas lesions on geranium and tomato occurred predominantly on the abaxial surface. With lesions on tomato, ornamental sweetpotato, and bat-faced cuphea, the epidermis was often subjected to the same hypertrophy apparent in the underlying parenchyma cells, ultimately allowing for greater cell expansion. However, in geranium, the epidermis resisted the expansion of the underlying cells, resulting in the eventual tearing of this tissue layer. Previous research indicates that lesion development on geranium is closely related to water status within the plant and may result in a wound response or provide a means of facilitated gas exchange. On the contrary, development of lesions on ornamental sweetpotato and tomato is believed to involve light quality. Based on these results and observations, two disorders occur across these species. The term “intumescence” should be used when referring to abnormal lesions on ornamental sweetpotato and tomato, and the term “oedema” should be used when referring to lesions on geranium. The term “intumescence” should also be used when referring to bat-faced cuphea lesions resulting from the morphological and anatomical aspects of these lesions closely resembling development on ornamental sweetpotato and tomato. Future research should investigate the role of light quality regarding development on this species.

Free access

George P. Opit, Yan Chen, Kimberly A. Williams, James R. Nechols and David C. Margolies

In three experiments, damage caused by twospotted spider mite (TSSM; Tetranychus urticae Koch) was correlated with the quality of ivy geranium [Pelargonium peltatum (L.) L'Her ex Aiton], and the action threshold for TSSM on ivy geranium was developed. Ivy geranium quality was measured as overall plant quality—plant size and form, and leaf greenness and glossiness—leaf browning, and leaf distortion. Young plants with high initial TSSM numbers (30 TSSM/plant) exhibited the greatest damage, suggesting that monitoring for TSSM early in the plant production cycle is necessary to prevent extensive damage. The leaf distortion index and overall plant quality were correlated with cumulative TSSM density and marketability in 4-week-old plants infested with 30 TSSM, whereas leaf browning was not correlated with either. Thus, either leaf distortion or overall plant quality can be used to measure economic damage resulting from TSSM. The action threshold for TSSM on ivy geranium was determined using overall plant quality. When the predatory mite, Phytoseiulus persimilis Athias-Henriot, is used to control TSSM, the action threshold was found to be 2 TSSM/leaf. Results also showed that fertilizer combinations of 8 or 24 mm nitrogen and 0.32, 0.64, or 1.28 mm phosphorus had no effect on cumulative TSSM density. When P. persimilis was released at predator: prey ratios of 1:60, 1:20, and 1:4, TSSM damage, measured as both leaf distortion and overall plant quality, was significantly reduced at 1:4 and 1:20, but not at 1:60. A 1:4 rate resulted in the most marketable plants. These results suggest that P. persimilis should be released at a rate of 1:4 when the TSSM action threshold is reached.

Free access

Joshua K. Craver, Chad T. Miller, Kimberly A. Williams and Nora M. Bello

Intumescences are a physiological disorder characterized by hypertrophy and possibly hyperplasia of plant tissue cells. Ultimately, this disorder results in the death of the affected cells. Previous observations and research suggest that the quality and quantity of light to which plants are exposed may be a factor in development of the disorder. The purpose of this study was to assess the preventive effect of ultraviolet-B (UVB) radiation on intumescence development in ornamental sweetpotato (Ipomoea batatas). Two sweetpotato cultivars, Sidekick Black and Ace of Spades, were grown under light treatments consisting of 1) normal greenhouse production conditions; 2) supplemental UVB lighting; 3) supplemental UVB lighting with Mylar® sleeves over the lamps to block UVB radiation; and 4) control lighting with full spectrum lamps. Treatments were administered for 2 weeks, and the experiment was repeated twice. ‘Ace of Spades’ was highly susceptible to intumescence development, whereas ‘Sidekick Black’ was much less susceptible to the disorder. For ‘Ace of Spades’, the addition of UVB radiation significantly reduced the number of leaves affected with intumescences when compared with plants grown under the other light treatments; this UVB effect was not apparent for ‘Sidekick Black’. Furthermore, there was no evidence for reduced plant growth under UVB light in either cultivar, but side effects from the radiation included leaf discoloration and deformities. This study indicates a cultivar-specific effect of UVB light in preventing intumescence development on ornamental sweetpotato, therefore suggesting a potential genetic component in intumescence susceptibility. These results provide further insight in better understanding intumescence development and how to prevent the disorder.

Full access

Marci Spaw, Kimberly A. Williams, Laurie Hodges, Ellen T. Paparozzi and Ingrid L. Mallberg

This universally accessible, Web-based decision case presents the challenge of determining the cause of foliar chlorosis in a crop of dicentra (Dicentra spectabilis) being forced as a cut flower for Valentine's Day sales. The case study serves as a tool to promote the development of diagnostic skills for production dilemmas, including nutritional disorders, disease problems, and evaluation of the appropriateness of cultural practices. Cut dicentra is a minor crop and standard production practices are not well established. Solving this case requires that students research production protocol, as well as nutritional and pest problems, and determine whether they have enough information to recommend a solution. In this case study, a grower at Flint's Flower Farm must determine the cause of foliar chlorosis that is slowly appearing on about half the plants of her cut dicentra crop. The condition could be related to a number of possible problems, including a nutritional disorder, disease infection, or production practices. Resources are provided to aid students in gathering background information. Data accumulated by the grower are presented to allow students to eliminate unlikely solutions logically. The solution, which is unique to this crop, is provided along with detailed objectives and discussion points in teaching notes. This case study is complex in nature and is intended for use with advanced students in upper-level undergraduate courses of floriculture production, nutrient management, and plant pathology who have been previously exposed to the diagnostic process.

Full access

Kiffnie M. Holt, George Opit, James R. Nechols, David C. Margolies and Kimberly A. Williams

Biological and chemical control strategies for the twospotted spider mite (TSM; Tetranychus urticae) were evaluated in a greenhouse experiment replicated over time in mixed production of ivy geranium (Pelgargonium peltatum ‘Amethyst 96’) and two impatiens cultivars (Impatiens wallerana ‘Impulse Orange’ and ‘Cajun Carmine’). Chemical control using the miticide bifenazate was compared with two release strategies for biological control using the predatory mite, Phytoseiulus persimilis. Specific treatments included 1) a single application of bifenazate at 0.3 g·L−1 formulation (22.6% a.i.); 2) a single release of predatory mites at a 1:4 predator to pest ratio based on sampled pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. TSM populations were monitored for 4 weeks. After another 4 weeks, when plants were ready for market, plant quality ratings were recorded. The number of TSM per leaf dropped for all treatments on all genotypes but increased in the untreated plants. On ivy geranium, the fact that there were significantly more TSM on untreated plants was not reflected in average plant quality, but it did reduce the proportion of containers rated as salable at full price compared with both chemical and biological control. On impatiens, both treatment and cultivar had significant effects on the mean plant quality rating and on the proportion of containers rated as salable at full price. The use of a sampling plan to determine the appropriate number of predators to release was as effective as the currently recommended management treatments for TSM in bedding plants.

Free access

George P. Opit, Greg K. Fitch, David C. Margolies, James R. Nechols and Kimberly A. Williams

The effects of overhead and drip tube irrigation on twospotted spider mite (TSMs) (Tetranychus urticae Koch) and predatory mite (PMs) (Phytoseiulus persimilis Athias-Henriot) populations, as well as the biological control of TSMs by PMs, were investigated on Impatiens wallerana Hook. f. `Impulse Orange'. To determine the effects of the two irrigation methods on TSM populations, plants were inoculated with female TSMs 6 weeks after seeding. Plants were then irrigated twice every three days, and TSM counts were taken 3 weeks later. To assess the effects of irrigation method on PMs, plants were inoculated with TSMs 6 weeks after seeding, PMs were released 10 days later, plants were irrigated about once per day, and the number of predatory mites on plants was counted 3 weeks after release. To assess the effects of irrigation method on the biological control of TSMs by PMs, plants were inoculated with TSMs and PMs were released as before, but then plants were irrigated either three times every 2 days or three times every 4 days using either drip or overhead irrigation. The number of TSMs on plants and the number of leaves showing TSM feeding injury were measured 3 weeks after predator release. Overhead watering significantly reduced TSM and PM populations as much as 68- and 1538-fold, respectively, compared to drip irrigation with microtubes. Perhaps more important, overhead watering with or without predators significantly reduced the number of leaves sustaining TSM feeding injury as much as 4-fold compared to drip irrigation. These results confirm the common observation that TSM infestations and injury may be reduced by irrigation systems that wet plant foliage. However, predators still reduced TSMs even though overhead irrigation had a suppressive effect on predatory mites. Predators are particularly useful for reducing TSM injury when plants are watered infrequently. Overhead watering could be used in tandem with biological control as a component of an integrated crop management program for TSMs in ornamental greenhouses by rapidly lowering TSM population levels in hot spots before PMs are released.

Free access

Sharon J.B. Knewtson, Rhonda Janke, M.B. Kirkham, Kimberly A. Williams and Edward E. Carey

Growers have indicated that changes in soil quality under production in high tunnels is an important problem, but these have not yet been quantified or critically assessed in the central Great Plains of the United States. We conducted surveys of grower perceptions of soil quality in their tunnels (n = 81) and compared selected soil quality indicators (salinity and particulate organic matter carbon) under high tunnels of varying ages with those of adjacent fields at sites in Kansas, Missouri, Nebraska, and Iowa in the United States. Fourteen percent of growers surveyed considered soil quality to be a problem in their high tunnels, and there were significant correlations between grower perceptions of soil quality problems and reported observations of clod formation and surface crusting and to a lesser extent surface mineral deposition. Grower perception of soil quality and grower observation of soil characteristics were not related to high tunnel age. Soil surface salinity was elevated in some high tunnels compared with adjacent fields but was not related to time under the high tunnel. In the soil upper 5 cm, salinity in fields did not exceed 2 dS·m−1 and was less than 2 dS·m−1 under 74% of high tunnels and less than 4 dS·m−1 in 97% of high tunnels. The particulate organic matter carbon fraction was higher in high tunnels than adjacent fields at 73% of locations sampled. Particulate organic matter carbon measured 0.11 to 0.67 g particulate organic matter per g of the total carbon under high tunnels sampled. Particulate organic matter carbon in the soil was also not correlated to age of high tunnel. Soil quality as measured in this study was not negatively impacted by use of high tunnel structures over time.

Free access

May Elfar Altamimi, Rhonda R. Janke, Kimberly A. Williams, Nathan O. Nelson and Leigh W. Murray

Greenhouse experiments were conducted to determine the response of Brassica oleracea L., pac choi to fertilizer rates and sources and to establish optimal soluble nitrogen (N) application rates and nitrate meter sufficiency ranges. Conventional soluble fertilizer was formulated from inorganic salts with a 4:1 NO3-N:NH4-N ratio. Phosphorus (P) was held at 1.72 mm and potassium (K) at 0.83 mm for all treatment levels. The organic soluble fertilizer, fish hydrolyzate (2N–1.72P–0.83K), was diluted to provide the same N levels as with conventional treatments. Both fertilizers were applied at N rates of 0, 32, 75, 150, 225, 300, and 450 mg·L−1. Seedlings were transplanted and fertilizer application began at 18 days. Plants were harvested at 7 weeks (5 weeks post-transplanting) after receiving 15 fertilizer applications during production. Samples of the most recently matured leaves were harvested weekly and analyzed for petiole sap NO3-N and leaf blade total N concentration. Leaf count, leaf length, and chlorophyll content were also measured weekly. Fresh and dry weights were determined on whole shoots and roots. Optimum yield was achieved at the 150-mg·L−1 fertility rate with both conventional and organic fertilizers. Field and high tunnel experiments were conducted to validate the sufficiency ranges obtained from the greenhouse studies. Sufficiency levels of NO3-N for pac choi petiole sap during Weeks 2 to 3 of production were 800 to 1500 mg·L−1 and then dropped to 600 to 1000 mg·L−1 during Weeks 4 through harvest for both conventional and organic fertilizers sources. Total N in leaf tissue was less responsive to fertilizer rate effects than petiole sap NO3-N. Chlorophyll content was not useful in evaluating pac choi N status. These guidelines will provide farmers with information for leaf petiole sap NO3-N to guide in-season N applications.