Search Results

You are looking at 21 - 22 of 22 items for

  • Author or Editor: Kent J. Bradford x
Clear All Modify Search

The Ellis-Roberts seed viability equation is used to predict seed survival after storage at specified temperatures and moisture contents. Seed priming, which can break dormancy and accelerate germination, can also reduce seed storage life. Because primed seeds were not used in developing the Ellis-Roberts equation, the reciprocal nature of specific seed moisture content (MC, fresh weight basis) and temperatures that applies to nonprimed lettuce (Lactuca sativa L.) seeds may not apply to primed seeds. To determine how priming affects lettuce seeds in relation to the viability equation, an experiment was conducted using two cultivars, ‘Big Ben’ and ‘Parris Island Cos’. Seeds primed in polyethylene glycol 8000 (–1.45 MPa, 24 h at 15 °C) and nonprimed seeds were first adjusted to 6% and 9% moisture contents and then stored at 48 and 38 °C for up to 30 days, respectively. These storage conditions (6% MC and 48 °C; 9% MC and 38 °C) were predicted by the viability equation to result in equal longevities. Subsequent viability assays at 20 °C revealed that nonprimed seeds in both storage environments exhibited similar losses in viability over time, thus validating the Ellis-Roberts equation and the use of these conditions to apply different but equal aging stress. Primed seeds of both cultivars deteriorated faster than nonprimed seeds as expected. However, primed seeds did exhibit different rates of deterioration between the storage environments. Primed seeds stored at 9% MC and 38 °C deteriorated faster than primed seeds stored at 6% MC and 48 °C. The rate of decline in probit viability percentage was three times greater in primed ‘Big Ben’ seeds stored at 9% MC and 38 °C than for those stored at 6% MC and 48 °C (–1.34 versus –0.26 probits per day, respectively). ‘Parris Island Cos’ seeds stored at 9% MC and 38 °C had twice the rate of deterioration that those stored at 6% MC and 48 °C (–1.19 and –0.49 probits per day, respectively). The results indicate that primed lettuce seeds were more sensitive to the adverse effects of higher seed MC than were nonprimed seeds during storage at elevated temperatures.

Free access

The Univ. of California's Vegetable Crops Research and Information Center (VRIC) has developed a new World Wide Web site that allows the rapid development and peer review of multi-discipline, research-based information. The VRIC website (http://vrichome.ucdavis.edu) disseminates peer-reviewed fact sheets, research results, updated publications, and multi-media educational resources relating to critical issues, best management practices, postharvest handling, and marketing of vegetable crops. The website disseminates multi-discipline information originating from the Univ. of California, the USDA, and cooperating agencies and universities. The VRIC website proactively sends peer-reviewed critical-issue fact sheets to selected news media, government, industry, and academic contacts. These fact sheets help personnel frequently contacted by the media during crises to answer questions effectively. The website directs visitors to additional agricultural information resources and contains information on careers and educational opportunities available in the field of vegetable crops.

Free access