Search Results

You are looking at 21 - 30 of 42 items for

  • Author or Editor: Judy Thies x
Clear All Modify Search

Forty-seven of the 53 plant introductions (PI) in the U.S. Plant Germplasm System okra [Abelmoschus esculentus (L.) Moench] collection with reported resistance to root-knot nematodes [Meloidogyne incognita (Kofoid and White) Chitwood or unidentified Meloidogyne spp.] were evaluated in replicated greenhouse tests for reaction to the southern root-knot nematode (M. incognita). (Four of the 53 PI were unavailable and two accessions failed to germinate.) Preliminary evaluations identified a serious problem in evaluating this subset of okra germplasm for resistance to root-knot nematodes. The seed coats of most of the accessions were hard, and this trait delayed germination, which caused many of the seedlings to escape infection when the seeds were inoculated at planting with M. incognita eggs. A seed disinfection, scarification, and germination procedure was developed to ensure uniform seedling emergence. Except for two PI that failed to germinate, all available okra accessions with reported resistance were evaluated using these procedures. All tested accessions were susceptible to M. incognita race 3. Based on these results, we conclude that none of the accessions in the okra PI collection with reported resistance to root-knot nematodes is useful as M. incognita—resistant parental material in okra breeding programs.

Free access

Two root-knot nematode-resistant bell pepper cultivars, ‘Charleston Belle’ and ‘Carolina Wonder’ (Capsicum annuum L. var. annuum], and their susceptible parents, ‘Keystone Resistant Giant’ and ‘Yolo Wonder B’, were compared for managing the southern root-knot nematode [Meloidogyne incognita (Chitwood) Kofoid and White] in fall and spring tests at Citra, FL. In the fall test, ‘Charleston Belle’ and ‘Carolina Wonder’ exhibited minimal root galling and nematode reproduction, and ‘Keystone Resistant Giant’ and ‘Yolo Wonder B’ exhibited severe root galling and high nematode reproduction. Fruit yield of ‘Charleston Belle’ was 97% greater than yields of the two susceptible cultivars (P ≤ 0.006). In the spring test, one-half of the plots were treated with methyl bromide/chloropicrin before planting the same four bell pepper cultivars. ‘Keystone Resistant Giant’ and ‘Yolo Wonder B’ grown in untreated control plots exhibited severe root galling and high nematode reproduction, but the other six cultivar × methyl bromide combinations exhibited minimal root galling and nematode reproduction. Although soil temperatures (10-cm depth) were greater than 30 °C on 78 days and 57 days during the Fall 2002 and Spring 2003 trials, respectively, resistance did not break in ‘Charleston Belle’ and ‘Carolina Wonder’ in either test. These results demonstrate that root-knot nematode-resistant cultivars such as Charleston Belle and Carolina Wonder are viable alternatives to methyl bromide for managing southern root-knot nematode in bell pepper in sub-tropical environments.

Free access

A series of greenhouse and field studies was conducted over 9 years to characterize three new sources of resistance in cowpea [Vigna unguiculata (L.) Walp.] to the southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and to determine if the resistances are conditioned by genes allelic to the Rk root-knot nematode resistance gene in `Mississippi Silver'. Three plant introductions (PI), PI 441917, PI 441920, and PI 468104, were evaluated for reaction to M. incognita in four greenhouse tests, and in every test each PI exhibited less galling, egg mass formation, or egg production than `Mississippi Silver'. F2 populations of the crosses between `Mississippi Silver' and each of the three resistant PIs were also evaluated for root-knot nematode resistance in a greenhouse test. None of the F2 populations segregated for resistance, indicating that PI 441917, PI 441920, and PI 468104 each has a gene conditioning resistance that is allelic to the Rk gene in `Mississippi Silver'. Our observations on the superior levels of resistances exhibited by PI 441917, PI 441920, and PI 468104 suggest that the allele at the Rk locus in these lines may not be the Rk allele, but one or more alleles that condition a superior, dominant-type resistance. The availability of additional dominant alleles would broaden the genetic base for root-knot nematode resistance in cowpea.

Free access

Southern root-knot nematodes (Meloidogyne incognita) are an important re-emerging pest of watermelon in the United States and worldwide. The re-emergence of root-knot nematodes (RKNs) in watermelon and other cucurbits is largely the result of the intensive cultivation of vegetable crops on limited agricultural lands coupled with the loss of methyl bromide for pre-plant soil fumigation, which has been the primary method for control of RKNs and many soilborne diseases of cucurbits and other vegetable crops for several decades. One alternative for managing RKN in watermelon is the use of resistant rootstocks for grafted watermelon. We have developed several RKN-resistant Citrullus lanatus var. citroides lines (designated RKVL for Root-Knot Vegetable Laboratory), which have shown promise as rootstocks for grafted watermelon. In 2011 and 2012, we demonstrated that F1 hybrids derived from our selected RKVL lines exhibited resistance to RKN that was equal to or greater than that of the parental RKVL lines when grown in fields highly infested with M. incognita. In 2011, although significant differences were not observed among rootstocks, the F1 hybrids produced slightly higher yields compared with the selected parental lines. Among the selected parental lines, RKVL 318 produced high yields in both years. In 2011, three of four RKVL parental lines and all four of their F1 hybrids produced greater (P < 0.05) fruit yields than self-grafted ‘Tri-X 313’, ‘Emphasis’ bottle gourd, and ‘Strong Tosa’ squash hybrid. In 2012, three RKVL F1 hybrid lines produced higher yields than the selected parents. Overall, these F1 hybrids were vigorous and should provide useful genetic material for selection and development of robust RKN-resistant C. lanatus var. citroides rootstock lines.

Free access

A preliminary screening experiment was conducted to evaluate 47 cowpea [Vigna unguiculata (L.) Walp.] genotypes for use as a weed-suppressing cover crop. Of these, 11 were selected for further testing on the basis of vigorous growth and weed-suppressing ability. In a field experiment repeated over 4 years, the selected genotypes were not different from the leading cover crop cultivar `Iron Clay' in biomass production. Vigor ratings, vine growth ratings, and canopy widths of some genotypes exceeded those of `Iron Clay' Vigor ratings and canopy measurements were efficient selection criteria that could be useful for breeding cover crop cowpea cultivars. All except one selection were highly resistant to southern root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood], and the selections varied in seed size, photoperiod, and response to foliar diseases.

Free access

A preliminary screening experiment was conducted to evaluate 47 cowpea [Vigna unguiculata, (L.) Walp.] genotypes for use as a weed-suppressing cover crop. Lines evaluated in this study included forage varieties, PI accessions, experimental breeding lines, and land races of unknown origin. Of these, 11 were selected for further testing on the basis of vigorous growth and weed-suppressing ability. In a field experiment repeated over 4 years, the selected genotypes were not different from the leading cover crop cultivar, `Iron Clay', in biomass production. Vigor ratings, vine growth ratings, and canopy widths of some genotypes exceeded those of `Iron Clay'. Vigor ratings and canopy measurements were efficient selection criteria that could be useful for breeding cover crop cowpea cultivars. All selections except an African cultivar, `Lalita', were highly resistant to southern root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood], and the genotypes varied in seed size, photoperiod, and response to diseases.

Free access

Phytophthora capsici is an aggressive pathogen that is distributed worldwide with a broad host range infecting solanaceous, fabaceous, and cucurbitaceous crops. Over the past two decades, increased incidence of Phytophthora blight, particularly in eastern states, has threatened production of many vegetable crops. Cucumis melo L. (honeydew and muskmelon), although especially susceptible to fruit rot, is also highly susceptible to crown rot. Currently, little is known about host resistance to P. capsici in C. melo. To assess crown rot resistance in C. melo seedlings, 308 U.S. PIs, and two commercial cultivars (Athena and Dinero) were grown under greenhouse conditions. Seedlings with three to four true leaves were inoculated with a five-isolate zoospore suspension (1 × 104 zoospores per seedling) at the crown and monitored for 6 weeks. All the susceptible control plants of Athena died within 7 days post-inoculation. The majority of the PIs (281 of 308) were highly susceptible to crown rot and succumbed to the disease rapidly and had less than 20% of the plants survive. Several PIs (PI 181748, PI 182964, and PI 273438) succumbed to crown rot earlier than the susceptible melon cultivars. Eighty-seven PIs selected on the basis of the first screen were re-evaluated and of these PIs, 44 were less susceptible than cultivars Athena and Dinero. Twenty-five of the 87 PIs were evaluated again and of these six PI, greater than 80% of the plants survived in the two evaluations. Disease development was significantly slower on these PIs compared with the susceptible checks. High levels of resistance in S1 plants of PI 420180, PI 176936, and PI 176940 were observed, which suggests that development of resistant germplasm for use in breeding programs can be accomplished. Further screening and careful selection within each of these PIs can provide a framework for the development of resistant germplasm for use in breeding programs.

Free access