Search Results

You are looking at 21 - 30 of 71 items for

  • Author or Editor: John Ruter x
Clear All Modify Search
Author:

Carolina laurel cherry (Prunus caroliniana) is native to the U.S. southeastern coastal plain from North Carolina westward to eastern Texas. The species has been planted extensively in the southeast as an ornamental tree or hedge. Unfortunately, carolina laurel cherry naturalizes readily and is now found in a variety of habitats, both natural and disturbed. Flowering occurs in the late winter/early spring before new leaves emerge and fruit ripens in the fall/winter. Fruit is eaten by migratory birds and seed is dispersed. Seedlings readily germinate in the understory of forests and landscapes in the spring. As there are a limited number of cultivars available, selections with improved form and sterility are needed for the landscape trade. In 2008, seed was collected and treated with Cobalt-60 gamma irradiation at rates ranging from 0 to 150 Gy. The lethal dose killing 50% of the seedlings (LD50) was between 50 and 100 Gy. Three sterile plants were selected in 2012 from the M1 (first generation of mutagen-treated seedlings) population totaling 62 seedlings. M2 (second-generation seedlings from M1 parents) seed was collected Fall 2012, and 1509 seedlings were grown to flowering size in containers. In 2014–15, 120 seedlings that showed no fruit production were planted in the field in Watkinsville, GA, for further evaluation. Ratings on field-grown plants in Dec. 2017 and 2018 showed that 73% and 78% of the plants, respectively, produced no fruit, whereas the remaining plants had minimal to heavy fruit set. Because carolina laurel cherry is andromonoecious, production of male and bisexual flowers was evaluated on 17 selections in 2018. Of 500 flowers evaluated per selection, the number of male flowers per plant ranged from 22 to 415 (4.4% to 83%). The number of racemes with all-male flowers on each selection ranged from 1 to 32. There were no significant correlations between the number of male flowers or number of all-male flowered racemes per plant and production of fruit. Approximately 5% of M2 seedlings remain seedless after 6 years of growth.

Open Access

Temperature sensitivity of CO2 assimilation (ACO2), dark respiration, and chlorophyll fluorescence was evaluated among three taxa of hollies including I. aquifolium L., I. cornuta Lindl. & Paxt., and I. rugosa Friedr. Schmidt. Variations in foliar heat tolerance among these species were manifested in temperature responses for ACO2. Temperature optima of ACO2 for I. rugosa, I. cornuta, and I. aquifolium were 22.0, 26.3, and 27.9 °C, respectively (LSD0.05 = 2.9). Temperature responses of respiration were similar among taxa and did not appear to be contributing factors to variations in ACO2. At 40 °C, potential photosynthetic capacity, measured under saturating CO2, was 4.1, 9.4, and 14.8 μmol·m-2·s-1 for I. rugosa, I. aquifolium, and I. cornuta, respectively (LSD0.05 = 5.1). Variations in the relative dark-acclimated fluorescence temperature curves were used to assess thresholds for irreversible heat injury. The critical fluorescence temperature threshold (TC) was similar (48.0 °C) for all taxa. The fluorescence temperature peaks (TP) were 52.0, 52.8, and 53.5 °C for I. rugosa, I. cornuta, and I. aquifolium, respectively (LSD0.05 = 0.9). Based on these results, I. rugosa was the most heat-sensitive species, followed by I. aquifolium and I. cornuta. Ilex cornuta also had substantially greater potential photosynthetic capacity than the other species at 40 °C, indicating superior metabolic tolerance to high temperatures.

Free access

Plants of `Rotundifolia' holly (Ilex crenata Thunb.) were grown for 3 weeks with root zones at 30,34,38, or 42C for 6 hours daily to evaluate the effects of supraoptimal root-zone temperatures on various photosynthetic processes. After 3 weeks, photosynthesis of plants grown with root zones at 38 or 42C was below that of plants grown at 30 or 34C. Chlorophyll and carotenoid levels decreased while leaf soluble protein levels increased as root-zone temperature increased. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity per unit protein and per unit chlorophyll responded quadratically, while RuBisCO activity per unit fresh weight increased linearly in response to increasing root-zone temperature. Results of this study suggest that `Rotundifolia' holly was capable of altering metabolism or redistributing available assimilates to maintain CO2 assimilation rates in response to increasing root-zone temperatures.

Free access

Respiration of excised Ilex crenata (Thunb.) `Rotundifolia' roots as influenced by root-zone growth temperature and buffer solution temperature was measured in the presence and absence of salicylhydroxamic acid (SHAM) and potassium cyanide (KCN). Respiration rates of roots excised from plants grown for 3 weeks with root-zones at 30, 34, 38, or 42C decreased linearly with increased root-zone growth temperatures when the buffer solution was maintained at 25C. When the buffer solution was the same temperature as the root growth temperature, respiration rates were similar. Respiration in roots from plants grown with the root zone at 30C was maximal with the buffer solution at 34C and decreased to a minimum at 46C. Above 46C, a presumably extra-mitochondrial stimulation of O2 consumption occurred. The activity of the CN-resistant pathway was fully engaged (P' = 0.99) when roots were grown at 30C and buffer solution was at 25C (30-25). CN-resistant pathway activity decreased with `the buffer solution at 46C.

Free access

Ilex crenata Thunb. `Rotundifolia' split-root plants were grown for 3 weeks with root zones at 30/30, 30/34, 30/38, 30/42, 34/34, 38/38, and 42/42C. The 38C root-zone treatment was the upper threshold for several growth and physiological characteristics. A portion of the root system grown at or near the optimum temperature could compensate, in terms of shoot growth, for part of the root system exposed to supraoptimal root-zone temperatures up to 38C. Higher root-zone temperatures did not affect short-term photosynthetic rates or root : shoot ratios, but altered photosynthate partitioning to various stem and root sinks. Although no differences were found for total 14C partitioned to the roots, partitioning of 14C into soluble and insoluble fractions and the magnitude of root respiration and exudation were influenced by treatment. Heating half of a root system at 38C increased the amount of 14C respired from the heated side and increased the total CO2respired from the nonheated (30C) half. Exposure of both root halves to 42C resulted in membrane damage that increased the loss of 14C-labeled photosynthates through leakage into the medium.

Free access

In 1991, a cooperative project with the U.S. National Arboretum in Washington, D.C., was initiated in Tifton, Ga. (USDA hardiness zone 8a) to evaluate red maples (Acer rubrum L.) potentially suitable for the coastal plain region of the southeastern U.S. Greatest annual height growth across all cultivars over 6 years was for `Alapaha', a seedling selection from southern Georgia with annual height growth of 35 inches (88.0 cm), and several seedling selections from northern Florida with annual height increases in excess of 33 inches (86.0 cm). Selections showing the least average annual height growth were NA-56024 and NA-57772 (`Red Rocket'). For commercially available cultivars, the most dependable for fall color in Tifton was `October Glory'®. In addition, two new selections from the National Arboretum have also shown excellent fall color—`Somerset' and `Brandywine'.

Free access

Ilex crenata Thunb. `Rotundifolia' split-root plants were grown for 3 weeks at root-zone temperatures of 30/30, 30/34, 30/38, 30/42, 34/34, 38/38 and 42/42. The 38 C root-zone temperature treatment was the upper threshold for a number of growth and physiological parameters. A portion of the root system grown at near optimum temperatures could compensate in terms of shoot growth for part of the root system exposed to supraoptimal root-zone temperatures up to the 38 C critical threshold. Higher root-zone temperatures did not affect photosynthetic rates or root:shoot ratios, but altered photosynthate partitioning to different stem and root sinks. Although no differences were found for total 14C partitioned to the roots, partitioning of the 14C into soluble and insoluble fractions and the magnitude of root respiration and exudation were influenced by treatment. Heating half of a root system at 38 C increased the amount of 14C respired from the heated side and increased the total CO2 respired from the non-heated (30 C) half. Exposure of both root halves to 42 C resulted in membrane damage which increased the leakage of 14C photosynthates into the medium.

Free access

Genome size estimates and chromosome number information can be useful for studying the evolution or taxonomy of a group and also can be useful for plant breeders in predicting cross-compatibility. Callicarpa L. is a group of ≈140 species with nearly worldwide distribution. There are no estimates of genome size in the literature and the information on chromosome numbers is limited. Genome size estimates based on flow cytometry are reported here for 16 accessions of Callicarpa comprising 14 species in addition to chromosome counts on six species. Chromosome counts were conducted by staining meristematic cells of roots tips using modified carbol fuchsin. Holoploid genome size estimates ranged from 1.34 pg to 3.48 pg with a mean of 1.74 pg. Two tetraploids (2n = 4x = 68; C. salicifolia P'ei & W. Z. Fang and C. macrophylla Vahl GEN09-0081) were identified based on holoploid genome size and confirmed by chromosome counts. There was little variation among species for monoploid genome size. 1Cx-values ranged from 0.67 pg to 0.88 pg with a mean of 0.77 pg. Chromosome counts for six species revealed a base chromosome number of x = 17. Callicarpa chejuensis Y. H. Chung & H. Kim, C. japonica Thunb. ‘Leucocarpa’, C. longissima Merr., and C. rubella Lindl. were confirmed as diploids (2n = 2x = 34). Cytology supported flow cytometry data that C. salicifolia and C. macrophylla GEN09-0081 were tetraploids. The two accessions of C. macrophylla included in the study were found to be of different ploidy levels. The presence of two ploidy levels among and within species indicates that polyploidization events have occurred in the genus.

Free access

High root-zone temperatures have been shown to affect photosynthate partitioning, respiration, nitrogen nutrition and growth of `Rotundifolia' holly. The loss of chlorophyll and protein in shoots of other plants in response to high root-zone temperatures has been documented. Therefore, the objectives of this research were to look at the effects of supraoptimal root-zone temperatures on RUBISCO activity, leaf protein and photosynthetic pigment levels.

Soluble protein levels in leaves increased linearly as root-zone temperature increased from 30 to 42 C. RUBISCO activity per unit protein and per unit chlorophyll responded quadratically to root-zone temperatures. Total chlorophyll, chlorophyll a & b, and carotenoid levels decreased linearly with increasing root-zone temperature. It is possible that `Rotundifolia' holly was capable of redistributing nitrogen to maintain RUBISCO activity for photosynthesis.

Free access