Search Results

You are looking at 21 - 30 of 35 items for :

  • Author or Editor: John M. Dole x
  • HortTechnology x
Clear All Modify Search

Influence of season of the year, cutting week within a propagation cycle (number of weeks from which a stock plant has been harvested), stock plant age, and rooting compound on postpropagation cutting quality, and adventitious rooting was examined for ‘Stained Glass’ coleus (Solenostemon scutellarioides). Cuttings were of higher quality and produced more robust root systems when a propagation cycle started in summer vs. fall or spring even when cuttings were harvested from stock plants of the same age. Cutting week within a propagation cycle significantly influenced postpropagation cutting quality and rooting when cuttings were harvested over many weeks from the same stock plants and when cuttings were harvested for three propagation events using stock plants of different ages. When cuttings were harvested on the same days from stock plants of three distinct ages, cuttings harvested in the first week were larger with greater root weights but had more yellowed leaves and lower quality ratings compared with the two subsequent cutting weeks, but stock plant age had no effect on any observed parameter. Treatment with rooting compound did not overcome the significant influences of season and cutting week within a propagation cycle whether rooting was carried out in a greenhouse or growth chamber. Shoot and root fresh and dry weights were positively correlated with both daylength and midday instantaneous light of the stock plant environment.

Full access

Increasing cut stem length and reducing crop production time are producers’ goals for numerous cut flower species. One or both of these aims was met in several field-grown cultivars through foliar application of gibberellic acid (GA3), but effectiveness varied by cultivar, application rate, and timing. Of the 13 cultivars tested, stem length was increased in nine cultivars [Toreador Red celosia (Celosia argentea), Camelot White foxglove (Digitalis purpurea), Imperial Giants Pink Perfection larkspur (Larkspur hybrids), Compliment mix lobelia (Lobelia hybrids), Nippon Taka ornamental pepper (Capsicum annuum), Amazon Neon Duo and Bouquet Purple sweet william (Dianthus hybrids), Summer Pastels yarrow (Achillea millefolium), and Benary’s Giant Scarlet zinnia (Zinnia elegans)], and time to harvest was decreased in four cultivars [High Tide White ageratum (Ageratum houstonianum), lobelia, ornamental pepper, and zinnia], when GA3 was applied as a foliar spray. Concentrations of 400, 800, and 1600 mg·L−1 GA3 were most effective. Application of GA3 resulted in malformed or smaller flowers or lighter green foliage in foxglove, lobelia, sweet william, and zinnia. In most cases, only one application was tested, and greatest response to GA3 was observed during 3–6 weeks post application. Gibberellic acid did not influence stem length in three cultivars [High Tide White ageratum, Aurora Deep Purple delphinium (Delphinium hybrids), and Column Lilac Lavender stock (Matthiola incana)], and decreased flower stem length in one cultivar (High Tide Blue ageratum). Four cultivars were identified as good candidates for further research given their promising responses to GA3 treatments.

Full access

Effects of wet and dry storage methods were compared to improve postharvest performance of specialty cut flower species. While increasing duration of storage reduced vase life, vase life declined less with dry storage for marigold (Tagetes erecta) and rose (Rosa hybrida), but not for zinnia (Zinnia elegans) or lisianthus (Eustoma grandiflorum) over wet storage. Marigold stems had 1.9, 4.6, and 1.5 days longer vase life after 1, 2, or 3 weeks in dry storage, respectively, as compared with storage in water. Zinnia stems did not tolerate either wet or dry storage, while lisianthus stems had a longer vase life when stored in water as compared with dry storage. For rose, dry storage for 2 weeks increased vase life compared with wet storage. Dry stored marigold and lisianthus stems had higher water uptake after being placed in the vase as compared with the stems stored in water, while zinnia and rose had less uptake. Storage method had no effect on leaf relative water content (LRWC) in lisianthus, marigold, and zinnia; however, LRWC decreased with increased storage duration. This necessitates evaluation of storage method and duration effects for each species and cultivar to ensure extended storage life and improve postharvest quality.

Full access

In the United States and Canada, there has been an increase in the demand for local specialty cut flowers and a corresponding increase in production. To assess the needs of the industry, we electronically surveyed 1098 cut flower producers and handlers in the United States and Canada regarding their current cut flower production and postharvest problems, and customer issues. We received a total of 210 responses, resulting in a 19% response rate. The results showed that the main production problem was insect management; crop timing was the second most important problem and disease management was the third. Crop timing encompasses a range of related issues such as determining the correct harvest stage, harvest windows that are too short, flowering all at once, or lack of control when the crop is ready to harvest. The main postharvest problems were temperature management, hydration, and flower food management. Timing and stem length were the two most mentioned species-specific production issues, with each one listed by 10% or more of the respondents for eight of the total 31 species. Regarding on-farm postharvest handling, hydration and vase life were the two most mentioned issues; they were reported for five and three species, respectively. For postharvest during storage and transport, damage and hydration were the most common issues; these were listed for three species each. The most commonly mentioned customer complaints were vase life and shattering, which were reported for six and two species, respectively. These results will allow researchers and businesses to focus on the major cut flower production and postharvest issues and on crops that are most in need of improvement in North America.

Open Access

Present status and future prospects of cut rose (Rosa ×hybrida) flower production and postharvest management in Punjab, Pakistan, were investigated. Cut roses were the leading flower crop in the area under study, but production systems and practices were outdated and primitive, resulting in cut stems that were not acceptable in international markets. The majority of growers (65%) had only basic education (grade 10 or less) and 57% had small landholdings (<1 ha); therefore, they did not have modern production techniques and resources for high-quality cut rose production. Moreover, lack of production and postharvest facilities, ignorance of both public and private resources, and poor production and postharvest practices were prevalent. Growers' training regarding production and postharvest management would be required to lift the quality standards of this industry up to the international level. However, a positive trend was observed in cut rose businesses as more than half of growers (52%) entered into the business during last 5 years. In addition, 30% of growers were in business over 10 years, indicating that cut rose production can provide a sustained income for producers. This analysis of the cut rose industry in Punjab can serve as a model for other countries whose cut flowers industries are at a similar stage of development.

Free access

Growers have traditionally used mechanical pinching and other cultural practices to control height and encourage branching for full and uniform poinsettia (Euphorbia pulcherrima) plants. A total of six experiments were conducted over 5 years to evaluate the impact of chemically treating poinsettia on final height, branching, first color, visible bud formation, and anthesis. The first four experiments evaluated the potential of benzyladenine (BA) and gibberellins [GA(4+7)] to increase height of treated poinsettia. Timing of the application was assessed during Expt. 1 using a combined concentration of 3 ppm BA and 3 ppm GA(4+7) applied at 5, 7, 9, or 11 weeks after pinching; some cultivars exhibited significantly more elongated inflorescences when treatment occurred 7 or 9 weeks after pinching. The application method and frequency was assessed during Expt. 2, and treatments were applied one or three times with either drench application at a concentration of 2 ppm or foliar application at a concentration of 5 ppm or untreated controls. All plants treated with three drench applications produced taller plants on average than when only applied once or when treated with a foliar application. Expt. 3 further assessed height gain and effects on flowering during late-season production with foliar applications of BA+GA(4 + 7) applied 2 weeks after first color at a concentration of 2 ppm compared with untreated control plants. One cultivar, Mars Red, was observed to have a significant decrease in days to anthesis when treated (9 days) compared with untreated plants, but no cultivars exhibited a significant change in height resulting from treatment. Expt. 4 assessed both the application method (foliar and drench) and change in final environment when plants were either maintained in a greenhouse or relocated to a postharvest room before anthesis. Most cultivars experienced a significant height increase when treated with foliar application of BA+GA(4 + 7) regardless of the final environment, but a significant delay in days to first color, visible bud, and anthesis was prevalent, and only one cultivar exhibited a treatment benefit from drench application with no significant delay in flowering or differences caused by changing environment. Expts. 5 and 6 were conducted over 2 growing years to evaluate the benefits of chemically pinching poinsettia using dikegulac sodium at a concentration of 800 ppm applied either once or twice (1 week apart) or 1600 ppm applied once to promote branching. The tallest plants were those treated one time at a concentration of 800 ppm showing lack of dominance in the apical meristem. The greatest number of shoots occurred when plants were treated with 800 ppm twice, whereas one application of 800 or 1600 ppm often, but not always, resulted in more shoots compared with mechanically pinched plants. Interestingly, the increased number of shoots from treated plants was often more than double the number compared with mechanical pinching, but those additional shoots failed to develop, which resulted in only one or two additional inflorescences. Production time was found to be a tradeoff because most dikegulac sodium-treated plants experienced an increased number of days to first color, visible bud, and/or anthesis. These results demonstrate that height control, whether to encourage stem elongation or halt apical dominance, is cultivar-specific, and that although both the method and concentration may be determined uniformly on some cultivars, the timing of application is crucial because of potential delays in floral development.

Open Access

Preplant bulb soaks of ancymidol, flurprimidol, paclobutrazol, and uniconazole; foliar sprays of flurprimidol; and substrate drenches of flurprimidol, paclobutrazol, and uniconazole were compared for height control of `Prominence' tulips (Tulipa sp.). Height control was evaluated at anthesis in the greenhouse and 10 days later under postharvest conditions. Substrate drenches of ancymidol, flurprimidol, and paclobutrazol resulted in adequate control using concentrations of 0.5, 0.5, and 1 mg/pot a.i. (28,350 mg = 1 oz), respectively. At these concentrations, ancymidol drenches cost $0.06/pot and paclobutrazol drenches $0.03/pot. Since flurprimidol is not yet available and no price is available, growers will need to assess the cost compared to ancymidol and paclobutrazol. Flurprimidol foliar sprays at <80 mg·L–1 (ppm) were ineffective in controlling height during greenhouse forcing, but during postharvest evaluation 80 mg·L–1 resulted in 14% shorter plants than the untreated control. Preplant bulb soaks of flurprimidol, paclobutrazol, and uniconazole at concentrations of 25, 50, and 10 mg·L–1, respectively, effectively controlled plant height. Preplant plant growth regulator soaks are a cost-effective method of controlling plant height of tulips because of the limited amount of chemical required to treat a large quantity of bulbs.

Full access

Canterbury bells (Campanula medium `Champion Blue') seeds were primed using calcined clay at 68 °F (20 °C) for 1, 3, or 5 days at water potentials (Ψ) of -25, -20, -18, or -16 bars (-2.5, -2.0, -1.8, or -1.6 MPa). Germination was fastest (3.0 to 3.1 days) after priming with a Ψ of -18 or -16 bars for 5 days. Seeds primed for 3 or 5 days with moisture present germinated faster than nonprimed seeds, but time to 50% germination (T50) was longer when seeds were primed for 1 day regardless of Ψ compared to nonprimed seed. Germination uniformity decreased (time from 10% to 90% germination, T10-90, increased) as Ψ increased. Although a curvilinear relationship existed between T10-90 and priming duration, T10-90 did not differ between nonprimed seeds and seeds in any priming treatment except those primed for 3 days with 20% moisture (-16 bars). Priming did not affect total germination percentage (97%).

Full access

Favorable agro-climatic conditions and comparatively cheaper and readily available human resources offer a promising business opportunity to cut flower production in Pakistan. Presently, growers are limited to traditional cut flower crops such as rose (Rosa hybrids), gladiolus (Gladiolus hybrids), marigold (Tagetes erecta), and tuberose (Polianthes tuberosa) because of unavailability of improved new species and cultivars. To diversify cut flower production in Pakistan, a study was conducted to evaluate the production and postharvest performance of different cultivars of delphinium (Delphinium hybrids), snapdragon (Antirrhinum majus), and stock (Matthiola incana) in Faisalabad, Punjab, Pakistan. ‘Guardian White’ delphinium had the shortest time to harvest first marketable stems (160 days) with comparatively shorter stems (87.7 cm). Whereas ‘Aurora White’ and ‘Aurora Blue’ were high-temperature tolerant and produced attractive racemes with longer stems; 112.0 and 99.7 cm, respectively. All cultivars lasted about 7 days in distilled water (DW). ‘Cheerful White’ stock had the shortest cropping time and produced highest quality double flowers with longest stems (51.8 cm) compared with other cultivars tested. Vase solution of 4% sucrose supplemented with 100 mg·L−1 silver nitrate (AgNO3) extended the vase life of ‘Cheerful White’ stock up to 11.8 days compared with 8.2 days in DW. Pulsing with 10% sucrose supplemented with 100 mg·L−1 AgNO3 extended the longevity of ‘Lucinda Dark Rose Double’ stock (10.2 days) similar to vase solution of 4% sucrose plus 100 mg·L−1 AgNO3; however, ‘Lucinda Dark Rose Double’ stock produced shorter stems than ‘Cheerful White’. ‘Appleblossom’ snapdragon produced >10 marketable stems per plant with highest quality attractive flowers, and stout stems, which lasted 10.8 days in 4% sucrose vase solution supplemented with 100 mg·L−1 AgNO3. Among tested species/cultivars, all exotic species/cultivars produced uniform high quality stems resulting in higher productivity as compared with local cultivars and were favorably appraised by flower growers/retailers and are best suited for diversification of local cut flower industry.

Full access