Search Results

You are looking at 21 - 30 of 48 items for

  • Author or Editor: John Kelly x
Clear All Modify Search
Free access

Nihal C. Rajapakse and John W. Kelly

The role of light quality and quantity in regulating growth of vegetative Dendranthema × grandiflorum (Ramat.) Kitamura was evaluated using CuSO4 solutions and water (control) as spectral filters. Copper sulfate filters increased the red (R): far-red (FR) and the blue (B): R ratios (R = 600 to 700 nm; FR = 700 to 800 nm; B = 400 to 500 urn) of transmitted light. Photosynthetic photon flux (PPF) under 4%, 8% and 16% CuSO4 filters was reduced 26%, 36%, and 47%, respectively, from natural irradiance in the greenhouse, which averaged ≈ 950 μmol·m-2·s-1. Control treatments were shaded with Saran plastic film to ensure equal PPF as the corresponding C uSO4 chamber. Average daily maxima and minima were 26 ± 3C and 16 ± 2C. At the end of the 4-week experimental period, average height and internode length of plants grown under CuSO4 filters were ≈ 40% and 34% shorter than those of plants grown under control filter. Reduction in plant height and internode length was apparent within 1 week after the beginning of treatment. Total leaf area (LA) was reduced by 32% and leaf size (LS) was reduced by 24% under CuSO4 filters. Specific leaf weight (SLW) was higher under CuSO4 filters than for the controls. Irradiance transmitted through CuSO4 filters reduced fresh and dry leaf weights by 30%. Fresh and dry stem weights of plants grown under CuSO4 filters were 60% lower than those of controls. Relative dry matter accumulation into leaves was increased in plants grown under CuSO4 filters while it was reduced in stems. A single application of GA3 before irradiation partially overcame the height reduction under CuSO4 filters, suggesting GA biosynthesis/action may be affected by light quality. Our results imply that alteration of light quality could be used to control chrysanthemum growth as an alternative method to conventional control by chemical growth regulators. Chemical names used: gibberellic acid (GA)

Full access

Juan Carlos Díaz-Pérez and Kelly St. John

Use of colored shade nets has shown benefits in bell pepper and other horticultural crops. There is still, however, limited information on plant growth and physiology of bell pepper crop grown under colored shade nets. The objective was to determine the effects of colored shade nets on plant growth, leaf gas exchange, and leaf pigments of field-grown bell pepper. Experimental design was a randomized complete block with four replications and five shade treatments (black, red, silver, and white nets, and an uncovered control). Mean and maximal air temperature and midday root zone temperature (RZT) were highest in the unshaded treatment. Differences in air temperatures between shade net treatments were smaller compared with the differences in RZT between treatments. Plant fresh weight and stem diameter were reduced in the unshaded treatment, and there were no plant fresh weight and stem diameter differences among shade nets. The incidence of Phytophthora blight (caused by Phytophthora capsici) was greatest in the unshaded treatment. Leaf stomatal conductance (g S) and photosystem II efficiency were reduced and leaf temperature increased in unshaded conditions. Leaf net photosynthesis, g S, internal CO2, and PSII efficiency decreased with increasing leaf temperature. Differences in leaf temperature among shade net treatments were because of differences in solar radiation captured by leaves. Leaf total carotenoids were lowest in unshaded conditions and there were no differences in total carotenoids among the shade nets. Chlorophyll a concentration and chlorophyll a/b ratio was lowest in unshaded conditions. Leaf total phenols, flavonoids, and cupric reducing antioxidant capacity (CUPRAC) values were highest in red net and in unshaded conditions. Trolox equivalent antioxidant capacity (TEAC) values were highest in red net and lowest in silver net. In conclusion, compared with unshaded conditions, shade nets resulted in improved bell pepper plant growth and leaf gas exchange. These responses were due primarily to the reduced leaf and root zone temperatures under shaded conditions, regardless of the color of shade net. The differences in plant growth and function due to color of shade net were inconsistent or minor for most of the plant variables measured.

Free access

Sriyani Rajapakse, Mark Hubbard, Albert Abbott, Robert Ballard and John Kelly

Restriction Fragment Length Polymorphisms (RFLPs) were investigated in rose cultivars as a means of reliable cultivar identification. A random genomic DNA library was generated by shotgun cloning HindIII digested fragments of DNA extracted from rose cultivar Confection into pUC8 plasmid of Escherichia coli strain JM 83. Compared to genomic clones carrying low or highly repeated sequences, clones with moderately repeated sequences were most effective in cultivar identification. These clones were identified by hybridizing rose DNA fragments from the library with genomic DNA from `Confection'. Clones with moderately repeated copy sequences were used as probes to detect the presence of RFLPs by Southern hybridization of EcoRI digested genomic DNA of various rose cultivars. Several of these probes have revealed RFLPs useful in cultivar identification. By using a combination of two or more of these probes most of the rose cultivars compared at this time can be identified. A dichotomous key useful in identification of rose cultivars was prepared from RFLPs displayed by 3A9 probe.

Free access

Robert Pollock, Margaret J. McMahon and John W. Kelly

Description of the light environment used in photomorphogenic research varies greatly among research teams. The environment is often described as the ratio of red (R) to far-red (FR) light, particulary when involvement of the phytochrome system is suspected. There is disagreement in the appropriate center and range of values for each ratio component. Often the center for R is reported as 660 nm. However, in chlorophyll-containing tissue 645 nm may be more appropriate because of the absorption of chlorophyll at 660. Band widths around a selected peak also vary. The widths generally are 10 or 100 nm. Comparison of experiments that describe different peaks or ranges is difficult. Much of the variation in description results from the behavior of phytochrome. Phytochrome has absorption and action spectral peaks, however wavelengths that cause absorption and/or action to a lesser extent may extend more than 50 nm from the peak. Integration formulas such as Pfr/P consider the effects of all wavelengths. However, even the integration formulas do not explain all photomorphogenic responses. A description of the entire photomorphogenic spectrum may be the most appropriate means of communication.

Free access

Mark Hubbard, John Kelly, Albert Abbott and Robert Ballard

To protect plant patents, rose breeders would benefit from a reliable and sensitive method for differentiating cultivars at the genetic level. Rcombinant DNA technologies are being employed to characterize individual DNA structure of numerous rose cultivars. Restriction fragment length polymorphisms (RFLPs) are being studied to develop a characteristic pattern, or fingerprint for each cultivar. DNA from various cultivars is restriction enzyme digested and the fragments separated by agarose gel electrophoresis. The gel is Southern blotted and hybridized with probes from the rose DNA library to yield RFLPs. RFLPs are being located and will eventually result in a characteristic fingerprint for each cultivar.

Free access

John R. Clark, Kelly M. Irvin and Richard Maples

Nitrogen rates (using urea) of 22, 67 and 135 kg/ha were applied to mature mulched and unmulched highbush blueberries over a 5 year period. Soil samples were taken each year at budbreak (prior to fertilization) and post-harvest at the suggested time of foliar sampling (approx. Aug.1) to determine N rate effects within and among years. Data analysis revealed that the most common soil test variables affected by N rate and date of sampling were pH, electrical conductivity (EC) and nitrate. For unmulched plants, a significant reduction in soil pH was found each year between budbreak and Aug. 1 for the 67 and 135 kg/ha rates, but not usually for the 22 kg/ha rate. For mulched plants, pH reduction within N rate among sample dates was usually not significant. Overall soil pH reduction was greatest for the 135 kg/ha rate over the 5 years, and the pH reduction for the 67 kg/ha rate was similar to the 135 kg/ha rate for the unmulched plants. For mulched plants, 22 and 67 kg/ha rates had a similar trend of only a slight pH reduction over the 5 years. EC and nitrate trends were very similar, with the highest levels of each on the unmulched plants.

Free access

Sriyani Rajapakse, Mark Hubbard, Albert Abbott, John Kelly and Robert Ballard

Restricted Fragment Length Polymorphisms (RFLPs) were investigated in closely and distantly related rose cultivars as means of identifying those cultivars for the purpose of patent protection. A random genomic DNA library was constructed using the cultivar `Confection' and the Escherichia Coli strain JM83 plasmid vector pUC8. Clones with interspersed repeat sequences were then identified by hybridizing restriction digested cloned DNA fragments with nick translated genomic DNA of the rose cultivar `Confection'. Hybridization positive clones were screened for polymorphism by Southern hybridization on restriction digested genomic DNA of various rose cultivars. About 75% of the interspersed repeat copy probes screened revealed polymorphisms. We have identified probes that give fingerprint patterns for rose cultivars. From this information, a dichotomous key which differentiates the rose cultivars examined was prepared. Current research involves screening more probes and rose cultivars for polymorphisms, and examining single copy probes for potential use in RFLP genetic linkage map construction in roses.

Free access

Mark Hubbard, John Kelly, Sriyani Rajapakse, Robert Ballard and Albert Abbott

We have initiated a phylogenetic study using restriction fragment length polymorphisms to examine nuclear DNA variation in a number of Rosa species. Random genomic clones were isolated from the cultivar `Confection'. To generate these clones, genomic DNA was digested with the restriction enzymes Hind III and Eco RI and the resulting fragments cloned into a pUC8 plasmid and transformed into the E. coli bacterial strain JM83. Individual clones from the DNA library were screened for polymorphism by Southern hybridization methods. Those clones displaying polymorphisms were used in combination with one, two, or three restriction enzymes to identify different size restriction fragments. Each fragment was treated as a unit character and was used to generate a phylogenetic tree using the computer program “Phylogenetic Analysis Using Parsimony” (PAUP version 3.0). Results of the studies on the amount of genetic diversity and phylogenetic affinities of Rosa species among the different sections of the subgenus Rosa will be presented.

Free access

Nihal C. Rajapakse, Margaret J. McMahon and John W. Kelly

The response of `Bright Golden Anne' and `Spears' chrysanthemum plants to EOD-R or FR light was evaluated to determine the involvement of phytochrome in regulation of plant morphology under CuSO4 filters. Light transmitted through the CuSO4 filter significantly reduced height, internode length and stem dry weight of `BGA' and `Spears' chrysanthemum plants. However, the degree of response varied with the cultivar. Exposure to EOD-FR reversed the reduction of plant height, internode length and the stem dry weight caused by the light transmitted through CuSO4 filters to a level comparable with control plants. Exposure to EOD-FR did not significantly alter height and stem dry weight under control filter Exposure to EOD-R light reduced the height and stem dry weight of `BGA' plants grown under control filter but EOD-R had no effect under CuSO4 filters. In `Spears' plants, EOD-R caused stem dry weight reduction under control filters, but did not reduce stem or internode elongation. The results suggest phytochrome may be involved in controlling plant response under CuSO4 filters. However, there are evidence to indicate that an additional mechanism may be acting on stem/internode elongation.

Free access

David G. Clark, John W. Kelly and H. Brent Pemberton

Six cultivars of potted rose (Rosa ×hybrida L.) plants were evaluated for shipping stress-induced leaf chlorosis during holding at 8, 16, or 28C for 2, 4, or 6 days. `Meijikatar' showed more leaf chlorosis than the similar `Meirutral' at the higher simulated shipping temperatures and longer durations. Plants of `Meijikatar' were treated before simulated shipping with BA, TZ, or Promalin at 0, 25, 50, or 100 mg cytokinin/liter each, then paper-sleeved and stored in the dark in fiberboard boxes at 16C for 5 days. Plant quality 5 days after removal from storage was better with BA at 50 or 100 than at 0 mg·liter–1. All cytokinin-treated plants showed less leaf chlorosis than controls. Benzyladenine at 50 or 100 mg·liter–1 reduced leaf chlorosis when compared to all TZ treatments. There were no differences among treatments in the number of etiolated shoots per plant. Chemical names used: N-(phenylmethyl)-1H-purin-6-amine (benzyladenine, BA); trans-zeatin (TZ); gibberellic acid (GA4+7) + BA (Promalin).