Search Results

You are looking at 21 - 30 of 30 items for

  • Author or Editor: John Brown x
Clear All Modify Search

A grant to construct a “Model Farm” on Guam and the Virgin Islands was approved in 2000 by the USDA/CSREES/Initiative for Future Agriculture and Food Systems Program. The main goal was to establish an integrated model farm that had potential benefits for small agricultural enterprises operated by Asian-Pacific and Caribbean Islanders. University of Guam Triton Farm was established on 3.75 acres (1.5 ha) of the Agricultural Experiment Station. Initially we conducted a soil survey, and established windbreaks/hedgerows. We also built the foundation for aquaculture/aquaponic system, field irrigation systems, and animal production facilities. Then, we planted long-term fruit and ornamental plants while growing short-term vegetable crops for quick returns. Currently we raise tilapia (Oreochromis niloticus), goats (Capra hercus) and layer-chickens (Gallus gallus). We grow banana (Musa spp.), calamansi (X Citrofortunello mitis, hot peppers (Capsicum spp.), cucumbers (Cucumis sativus), lettuce (Lactuca sativa), eggplants (Solanum melongena), and Ti-leaf (Cordyline terminalis). We also try to develop value-added products using local produce. Occasionally we investigate other potential commodities and operational schemes for the farm. These must be suitable for Guam's agro-climate and social and economic structure. We focus on conservation of natural materials, composting, and sustainable agriculture. Education and outreach activity is also an important component of the farm to disseminate technologies and to educate young children about farming.

Free access

Abstract

Screening of 107 bean cultivars and plant introductions (PI) by 2-dimensional electrophoresis revealed only 3 different phaseolin patterns: Tendergreen (T), Sanilac (S), and Contender (C). The majority of the lines had either the ‘T’ (25%) or ‘S’ (69%) phaseolin patterns, with only 6% having the ‘C’ pattern. Phaseolin pattern was not strictly associated with commercial class but most cultivars with the ‘T’ pattern were snap beans, while the majority of lines with the ‘S’ pattern were dry beans. Furthermore, the phaseolin types of 15 cultivars were associated with previous cultivar groupings that were based on calculations of genetic relationships. A genetic distinction was noted between the groups of cultivars containing the ‘T’ and ‘S’ phaseolin patterns.

Open Access

Genes encoding lysozyme (T4L) from T4 bacteriophage and attacin E (attE) from Hyalophora cecropia were used, either singly or in combination, to construct plant binary vectors, pLDB15, p35SAMVT4, and pPin2Att35SAMVT4, respectively, for Agrobacterium-mediated transformation of `Galaxy' apple, to enhance resistance to Erwinia amylovora. In these plasmids, the T4L gene was controlled by the cauliflower mosaic virus 35S promoter with duplicated upstream domain and the untranslated leader sequence of alfalfa mosaic virus RNA 4, and the attE gene was controlled by the potato proteinase inhibitor II (Pin2) promoter. All transgenic lines were screened by polymerase chain reaction (PCR) for T4L and attE genes, and a double-antibody sandwich enzyme-linked immunosorbent assay for neomycin phosphotransferase II. Amplification of T4L and attE genes was observed in reverse transcriptase-PCR, indicating that these genes were transcribed in all tested transgenic lines containing each gene. The attacin protein was detected in all attE transgenic lines. The expression of attE under the Pin2 promoter was constitutive but higher levels of expression were observed after mechanical wounding. Some T4L or attE transgenic lines had significant disease reduction compared to nontransgenic `Galaxy'. However, transgenic lines containing both attE and T4L genes were not significantly more resistant than nontransgenic `Galaxy', indicating that there was no in planta synergy between attE and T4L with respect to resistance to E. amylovora.

Free access

Seven nptII and gus transgenic lines of the apple (Malus ×domestica Borkh.) rootstock Malling 7 (M.7) were examined by glucuronidase (GUS) histochemical testing and a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). These lines had different amounts of neomycin phosphotransferase II (NPTII). The amounts of NPTII among lines was positively correlated with the ability of the transgenic lines to regenerate in the presence of kanamycin, paromomycin, or geneticin. Regenerants derived from transgenic lines also varied greatly in GUS expression. The apical portion of regenerant stem tissues had stronger GUS staining than the basal portion of stem. All regenerated tissue of T1, a transgenic line originally classified as a uniform GUS staining line, showed non-GUS staining, while the regenerated tissues of chimeric transgenic lines showed nonstaining, chimeric staining, or uniform GUS staining, indicating the potential to select uniform GUS staining lines from chimeras. Polymerase chain reaction (PCR) indicated the gus gene was present in GUS negative (nonstaining) lines. Negative PCR results with primers derived from vir G of Agrobacterium tumefaciens, and failure to isolate A. tumefaciens from M.7 transgenics indicated that PCR and GUS staining results were not due to A. tumefaciens. A modified PCR methylation assay (MPMA) indicated that methylation of cytosines of the CCGG site in the gus gene, and in the border between the CaMV35S promoter and the gus gene, was positively correlated with complete gus gene silencing (nonstaining lines). However, the MPMA indicated that methylation was not always associated with variable GUS expression, suggesting that chimeric staining could be due to a mixture of transformed and nontransformed cells in some transgenic lines.

Free access

`Jonagold'/Mark apple (Malus domestica Borkh.) trees that were chip-budded in Washington and Illinois on 31 Aug. or 21 Sept. 1989 were sampled in Apr. 1990 to determine if magnetic resonance imaging (MRI) could be used to nondestructively examine vascular continuity or discontinuity between the rootstock and scion. Images could be placed into three categories based on signal intensity: 1) the rootstock, bud shield, and the bud or new scion growth had a high signal intensity; 2) the rootstock and the bud shield had a high signal intensity, but the scion had a low signal intensity; and 3) the rootstock had a high signal intensity, but the bud shield and scion had a low signal intensity. High signal intensity was associated with bound water in live tissue and the establishment of vascular continuity between the rootstock and scion. Azosulfamide staining and destructive sectioning confirmed that vascular continuity was established when the rootstock, bud shield, and scion had a high signal intensity in images, whereas budding failure occurred when the bud shield and/or the scion had a low signal intensity. Additional trees that had wilted or weak scion growth were collected from Illinois in June 1990. Parenchyma tissue was found in the scion adjacent to the bud shield that interrupted the vascular tissue. Poor scion growth on trees from the 21 Sept. budding in Washington may be attributed to insufficient growth of rootstock and/or scion tissues at the union in the fall.

Free access

Soil polarization for 98 days in 1985 resulted in a 91% reduction of weeds present in collard greens (Brassica oleracea acephafa L.) plots during 1986. Soil solarization was more effective in controlling weeds in collard green plots when compared to an application of Dacthal-75W herbicide in nonsolarized plots. Collard green plants grown in solarized soil showed an increase in yield and other growth responses. Soil samples from the rhizosphere of plants grown in solarized soil showed higher population levels of bacteria and thermotolerant fungi than from nonsolarized soil. There were significant negative responses in marketable yield and root growth of collard greens and in soil microflora in solarized soil in response to Dacthal-75W herbicide application. Chemical name used: dimethyltetrachloroterephthalate (Dacthal-75W).

Free access

The utility of alumina-buffered phosphorus (Al-P) fertilizers for supplying phosphorus (P) to bell pepper (Capsicum annuum L.) in soils with low-P availability was evaluated. Plants were grown at low-P fertility (about 100 kg·ha–1, low-P control; LPC), with conventional P fertilization (205-300 kg·ha–1 annually, fertilizer control; FC), or with one of two Al-P sources (Martenswerke or Alcoa) in 2001–03. The two Al-P fertilizers were applied in 2001; no additional material was applied in 2002-03. Plants grown with Martenswerke Al-P had similar shoot dry weight, root dry weight, root length, leaf P concentration, and fruit yield compared with plants grown with conventional P fertilizer in both 2002 and 2003 seasons. Bell pepper grown with Alcoa Al-P had similar shoot dry weight, root dry weight, root length, leaf P concentration, and fruit yield compared with plants grown without P fertilizer in both seasons. Alcoa Al-P continuously released bioavailable P for 2 years between 2001 and 2002, while Martenswerke Al-P continuously released bioavailable P at least 3 years between 2001 and 2003. These results indicate that some formulations of Al-P can serve as long-term P sources for field vegetable production.

Free access

Sunn hemp, Crotalaria juncea L., is a warm-season legume that is planted before or after a vegetable cash crop to add nutrients and organic matter to the soil, for weed-growth prevention, and to suppress nematode populations. Sunn hemp flowers may also provide nectar and pollen for pollinators and enhance biological control by furnishing habitat for natural enemies. Despite these benefits, adoption in the United States has been limited because of restricted availability of seeds, particularly in temperate climates. Experiments were conducted in north-central Florida to compare flowering and seed production of domestic and foreign sunn hemp lines across different seeding rates and planting dates. Our objectives were to test whether a low seeding rate would result in the production of higher numbers of flowers and to test whether planting earlier in the season would also result in higher numbers of flowers. Our results over a 2 year period showed that the domestic cultivar AU Golden is capable of substantial flowering and seed production in the test region, confirming the compatibility of local environmental conditions. Seed costs suggest that ‘AU Golden’ is comparable with sunn hemp lines grown in foreign countries and is much less expensive than the standard cultivar Tropic Sun from Hawaii. The results demonstrate the potential economic viability of early flowering cultivars of sunn hemp as a cover crop alternative in Florida to improve soils in agricultural landscapes.

Free access

Ten broccoli [Brassica oleracea L. (Botrytis Group)] accessions were grown in several environments to estimate glucosinolate (GS) variability associated with genotype, environment, and genotype × environment interaction and to identify differences in the stability of GSs in broccoli florets. Significant differences in genetic variability were identified for aliphatic GSs but not for indolyl GSs. The percentage of GS variability attributable to genotype for individual aliphatic compounds ranged from 54.2% for glucoraphanin to 71.0% for progoitrin. For total indolyl GSs, the percentage of variability attributable to genotype was only 12%. Both qualitative and quantitative differences in GSs were detected among the genotypes. Ten-fold differences in progoitrin, glucoraphanin, and total aliphatic GS levels were observed between the highest and lowest genotypes. Only two lines, Eu8-1 and VI-158, produced aliphatic GSs other than glucoraphanin in appreciable amounts. Differences in stability of these compounds among the cultivars were also observed between fall and spring plantings. Results suggest that genetic factors necessary for altering the qualitative and quantitative aliphatic GS profiles are present within existing broccoli germplasm, which makes breeding for enhanced cancer chemoprotectant activity feasible.

Free access

The renowned horticultural artist and plant breeder Luther Burbank worked with many species of plants. During his 50-year career, he introduced more than 800 cultivars, including more than 150 accessions of plums (Prunus spp.) in the late 1800s and early 1900s. Burbank preferred using wide, interspecific crosses to create a vast range of phenotypic variation and then artificially select from the extremes. Although a great artist, Burbank was a substandard scientist because he was derelict in pedigree note-taking. Although many of his introductions are extinct, hobbyists, enthusiasts, and international collections retain nearly a third of the economically viable cultivars he bred. For a century, many of his hybridizations remained inscrutable mysteries until modern genomic and computational tools developed their resolution and statistical power. Today, genotyping by sequencing (GBS) is a useful tool for pedigree reconstruction in the absence of reliable records. GBS can inform principal component analyses, identity by descent (IBD) kinship, and phylogenetic admixture, revealing complex relationships among taxa. In this study, whole genome sequencing was performed on 53 Prunus taxa used by Burbank in his breeding experiments in the most comprehensive genetic survey of his work to date. Exact parent–offspring relationships between this population may be impossible to discern due to years of back crossing, sibling mating, and open pollination. However, the proportion of genomic similarity among these taxa provides information on the relatedness of the genotypes in Burbank’s Prunus experiments, defining four primary lineages within his breeding population. These lineages comprised primarily P. salicina and P. simonii but also have influences from P. americana, P. cerasifera, P. domestica, and P. rivularis. The prevalence of P. simonii in Burbank’s Prunus introductions appears to have been vastly underreported, indicating that some of the seedstock founders of his breeding population could have been P. salicina × P. simonii hybrids at the inception of his career. This research has implications for pedigree reconstruction and prioritizing conservation in collections curation for future studies.

Open Access