Search Results

You are looking at 21 - 30 of 30 items for

  • Author or Editor: Jennifer R. DeEll x
Clear All Modify Search

Use of volatile emissions and chlorophyll fluorescence as indicators of freezing injury were investigated for apple fruit (Malus ×domestica Borkh.). `Northern Spy' and `Delicious' apples were kept at -8.5 °C for 0, 6, or 24 h, and then at 20 °C. After 1, 2, 5, and 7 d at 20 °C, fruit were analyzed for firmness, skin and flesh browning, soluble solid content, titratable acidity, ethanol, ethyl acetate, ethylene, respiration rate, and chlorophyll fluorescence. Freezing caused skin and flesh browning and a loss of fruit firmness, which was greater in `Northern Spy' than in `Delicious'. In `Northern Spy' fruit subjected to the freezing treatments, ethanol and ethyl acetate concentrations were as much as 37- and 300-fold greater, respectively, than in control fruit. `Delicious' fruit showed similar patterns of ethanol and ethyl acetate increase, but of lower magnitude, as a result of freezing. Higher fruit respiratory quotients were associated with increased ethanol and ethyl acetate concentrations. Ethylene production and chlorophyll fluorescence of fruit were reduced by freezing.

Free access

`Gala' apples (Malus × domestica Borkh) were harvested at optimum maturity for long-term storage, precooled overnight at 0 °C, treated with 1 μL·L-1; 1-methylcyclopropene (1-MCP) for 24 hours at 0 °C, and then placed in controlled atmosphere (CA) to determine the storage regime that would have the least negative impact on post-storage aroma volatile production. Fruit were stored at 0° and 2.5° C in ultra low oxygen (0.6% O2 -0.6% CO2; ULOCA), low oxygen (1.2% O2 -1.2% CO2; LOCA) and standard (2.5% O2 -2.5% CO2; SCA) CA for 120 and 240 days, and in ambient air for 60, 90, 120 and 150 days. Post-storage fruit volatiles were quantified by headspace analysis using a solid-phase micro-extraction (SPME) probe and FID-GC, and key volatiles were identified by GC-MS. Fruit volatile production was greatest at harvest, and decreased thereafter for fruit held in air and CA for up to 150 or 240 days, respectively. 1-MCP treatment resulted in reduced rates of respiration, ethylene and volatile production, regardless of storage regime, and resulted in a reduced production rate of all the major volatile compounds, including esters, alcohols, acids, aldehydes and ketones. Post-storage volatile production was the least in fruits removed from 0 °C in ULO, followed by LO, SCA, and then air. 1-MCP treatment inhibited post-storage volatile production in CA- and air-stored fruit by as much as 95 percent. However, recovery of aroma was delayed significantly in fruit which had been held at 0 °C vs. 2.5 ° C, suggesting aroma volatile synthesis in `Gala' is chilling sensitive.

Free access

Wounding during processing triggers physiological reactions that limits shelf-life of fresh-cut apples. Exposure of `Empire' and `Crispin' apples at harvest to the ethylene antagonist 1-methylcyclopropene (1-MCP, SmartFresh™) on the maintenance of fresh-cut apple quality was evaluated in combination with post-cut dipping of NatureSeal™. Efficacy of 1-MCP on fresh-cut physiology and quality depended on the storage duration and apple cultivar. Ethylene production and respiration of apple slices were inhibited by 1-MCP but not by NatureSeal. Total volatiles produced by fresh-cut apples was not affected by the treatments. 1-MCP influenced the quality attributes of fresh-cut apple slices prepared from apples stored either 4 months in cold storage or 6 months in controlled atmosphere. Enzymatic browning and softening of the cut-surface, total soluble solids, and total microbial growth were suppressed by 1-MCP in `Empire' apples. Overall, the influence of 1-MCP on quality attributes in `Crispin' apple slices was marginal. NatureSeal consistently maintained the firmness of fresh-cut apple slices held at 4 °C for up to 21 days. The additive effect of 1-MCP in the maintenance of apple quality is an advantage for processing and marketing of fresh-cut apples.

Free access

Flesh softening is a major quality parameter that can limit long-term storage of apple cultivars. This study investigated the combined effects of preharvest AVG (Retain™) application, 1-methylcyclopropene (1-MCP; EthylBloc™) exposure at harvest, and commercial controlled atmosphere (CA) storage (2.0% O2 + 2.5% CO2) on flesh softening of `Empire' apple. Treatments were assigned in a split-split-plot experimental design; AVG and no AVG application as the main-plot, CA and air storage as the sub-plots, and 0, 0.1 0.5, 1.0 mL·L–1 1-MCP as the sub-sub-plots. Apples were removed from storage at 70 and 140 days after harvest and kept up to an additional 2 weeks at 20 °C for post-storage assessment of ripening. Preharvest AVG application of `Empire' fruit delayed maturation slightly as determined by starch index at harvest, but did not affect fruit size at harvest nor flesh softening in storage. All levels of 1-MCP were equally effective in controlling fruit softening both in air and CA, as 1-MCP-treated fruit were ≈2.5 kg firmer than untreated fruit. This firmness advantage was still evident even after 2 weeks at 20 °C, with CA-stored fruit holding their firmness the best. When all three technologies were combined, treated fruit were overall 156% firmer than control fruit (no AVG, no 1-MCP, air-stored). As well, ethylene production and emanation of aroma volatiles were reduced significantly in these fruit. Therefore, the synergism of AVG, 1-MCP and long-term CA storage could potentially hold flesh firmness and other ripening parameters of apples to values near those found at harvest.

Free access

The objective of this research was to evaluate the effects of vacuum cooling and temperature on the quality and storage life of mung bean sprouts (Vigna radiata L. Wilczek). Sprouts in micro-perforated bags were either not precooled or vacuum cooled to 9, 6, or 3 °C, and stored for 7 days at 1, 3, or 6 °C. Vacuum-cooled bean sprouts lost more weight than sprouts not precooled, and the weight loss was greater when the sprouts were cooled to lower temperatures. However, the total loss never exceeded 5% and no apparent signs of shrivel were observed. Vacuum cooling resulted in greater product freshness after 4 days of storage, but the effect was nonsignificant after 7 days. Storage temperature had greater influence on bean sprout quality than did cooling temperature, with greater freshness and whiter hypocotyls at the lower temperatures. However, blackening of cotyledons increased as the storage temperature decreased.

Free access

The ethylene antagonist 1-methylcyclopropene (1-MCP) was investigated for its potential impact on the transcription of key flavonoid biosynthetic (PAL and CHS) and ethylene perception (ERS1) genes during the postharvest storage of pear (Pyrus × communis L.). Optimally harvested red and green `d'Anjou' fruit were treated with 1 μL·L-1 1-MCP for 24 h at 0 °C to 1 °C, and subsequently placed in cold storage (0–1 °C, 90–95% RH). Fruit were removed every 21 days for 126 days, and evaluated for firmness, TSS, and ethylene and volatile production for up to 10 days (≈21 °C). Tissue samples were collected for Northern blot analysis and determination of flavonoid and chlorogenic acid content. PAL content increased during the 1-week simulated marketing period irrespective of storage duration, which coincided with an increase in respiration and ethylene content. Although it was still detectable, total PAL content was dramatically reduced by the 1-MCP treatment. CHS was abundant immediately after harvest and after removal from storage, but declined rapidly thereafter, and was not detectable after 1 week at room temperature. The 1-MCP treatment further exacerbated this decreasing trend in CHS content. ERS1 content appears to be stable throughout storage and the simulated marketing period, with levels lower in 1-MCP-treated fruit. These results suggest that 1-MCP significantly inhibits the transcription of key flavonoid and ethylene regulatory enzymes, possibly compromising the nutraceutical content of pear fruit. The increase in PAL with the concomitant decrease of CHS after removal from storage suggests a diversion of carbon from flavonoid compounds into simple phenols, such as chlorogenic acid.

Free access

‘Honeycrisp’ is a relatively new apple cultivar highly susceptible to physiological disorders, such as soggy breakdown. The overall objective of this study was to identify preharvest weather parameters that influence the incidence of soggy breakdown over the different phases of fruit development. Using weather data and evaluation of fruit quality from three sites in Ontario, two sites in Quebec, and one site in Nova Scotia from 2009 to 2011, and data from four sites in Ontario from 2002 to 2006, a model for soggy breakdown incidence (SBI) was developed to predict the level of susceptibility in ‘Honeycrisp’ apples. This model uses primarily two weather variables during the last phase of fruit development [91 days from full bloom (DFB) to harvest] to accumulate an SBI index during the growing season, from full bloom to harvest. Cool (temperature <5 °C) and wet conditions (precipitation >0.5 mm) during this last phase resulted in increased soggy breakdown susceptibility levels. The predictions of the SBI model resulted in 68% of well-estimated cases (threshold of ±5%) (RMSE = 6.45, EF = 0.28, E = −0.04). Furthermore, firmness was linked to soggy breakdown, in addition to weather conditions, revealing a positive effect of high firmness at harvest on the development of the disorder. However, the effect of fruit quality attributes (e.g., internal ethylene concentration, starch index, firmness, and soluble solid content) by themselves, without considering weather conditions, revealed no relationship with the incidence of soggy breakdown.

Free access

Multiple types of flesh browning can occur as storage disorders in ‘Honeycrisp’ apple (Malus ×domestica Borkh.) fruit. Predicting its occurrence is hindered by differing definitions of the types of browning, incomplete understanding of their etiologies, and difficulty in assessing harvest maturity of ‘Honeycrisp’ fruit. In 2013, of ‘Honeycrisp’ fruit grown, harvested over multiple weeks, and stored in Maine, Minnesota, Ontario, and Quebec, only the Quebec fruit developed diffuse flesh browning. A detailed comparison showed that the Quebec fruit differed in size, but not in other quality attributes, from fruit of the other locations. The Quebec fruit experienced lower temperatures during active fruit growth and were increasing in cell size up to harvest. Analyses of climate data from 2009 to 2015 indicated that accumulated growing degree-days (GDD) 50–60 day after full bloom (DAFB) could account for 31% of the variation in diffuse flesh browning, and seasonal GDD <500 are associated with a greater likelihood of injury. Fruit that exhibited diffuse flesh browning had higher magnesium and lower fructose levels than unaffected fruit. As these measurements were made after browning was assessed, the timing of the onset of these characteristics in relation to browning cannot be determined.

Free access

Soft scald is an apple (Malus ×domestica Borkh.) fruit disorder that appears in response to cold storage after about 2–8 weeks. It appears as a ribbon of dark tissue on the peel of the fruit, with occasional browning into the flesh. Several apple cultivars are susceptible to it, including Honeycrisp. The objectives of this study were to examine the cellular microstructure of fruit exhibiting soft scald and determine if any aspect of the peel microstructure at harvest could be indicative of future soft scald incidence. Light and electron microscopy were used to examine the peel microstructure of ‘Honeycrisp’ fruit that were unaffected or affected by soft scald. Tissue with soft scald had brown pigmented epidermal and hypodermal cells, whereas unaffected fruit peel epidermal cells were unpigmented. Cuticular wax of unaffected peel had upright wax platelets or clumps of wax, but peel surfaces with soft scald exhibited flattened granules and were more fragile than that of unaffected fruit. Epidermal cells of fruit with soft scald were more disorganized than that of unaffected fruit. Light microscopy was used to examine peels of ‘Honeycrisp’ fruit from four growing locations and fruit from a ‘Honeycrisp’ breeding population at harvest. ‘Honeycrisp’ and ‘Honeycrisp’ progeny fruit were also stored at 0 °C for 8 weeks and scored for soft scald incidence. Cross-sections of unaffected peel of stored ‘Honeycrisp’ fruit looked similar to that of freshly harvested fruit. No significant correlations were found between soft scald incidence and measured microstructural attributes of ‘Honeycrisp’ fruit at harvest, suggesting that peel microstructure cannot be used to predict possible soft scald incidence after storage.

Free access