Search Results

You are looking at 21 - 30 of 43 items for

  • Author or Editor: James Schupp x
Clear All Modify Search

Reducing apple crop load during bloom can increase fruit size and promote annual bearing when compared with crop reduction at later timings. In this study, we compared the efficacy of chemical blossom-thinning strategies on ‘Golden Delicious’ and ‘Gala’ apple trees. Several blossom-thinning treatments were evaluated, including 1) unthinned control (control), 2) hand-thinned (HT) at bloom, 3) liquid lime sulfur + Stylet-Oil (LS + SO), 4) ammonium thiosulfate (ATS), 5) endothall (ET), and 6) naphthaleneacetamide (NAD). Chemical treatments were applied twice during bloom, using a predictive model to determine application timings. Blossom thinner effects on pollen tube growth, fruit set, and yield responses were evaluated. LS + SO and ATS reduced the number of pollen tubes that entered the style for ‘Golden Delicious’ by 75% and 63%, respectively. ET and NAD did not affect the number of pollen tubes that entered the style. In one of 2 years, LS + SO resulted in a near-ideal crop load and increased fruit weight. ATS was effective in reducing initial fruit set in ‘Golden Delicious’ and ‘Gala’, but did not reduce whole-tree crop density. ET reduced crop load in all experiments but caused excessive spur leaf injury and negatively affected fruit size of ‘Gala’ but not ‘Golden Delicious’. NAD had limited efficacy on ‘Golden Delicious’ at the concentrations and application timings used in this trial. When used as the sole method of crop load management, none of the chemistries evaluated over-thinned or increased fruit injury. However, ET caused excessive thinning when evaluated as part of a commercial crop load management program on ‘Gala’. Of the products evaluated, LS + SO provided the best overall thinning response.

Free access

The objective of these studies was to evaluate the efficacy of several concentrations of 1-aminocyclopropane carboxylic acid (ACC) for thinning apple at the standard growth stage for chemical thinning timing and a late thinning growth stage. ACC was applied at concentrations of 0, 100, 300, or 500 mg·L−1 to ‘Golden Delicious’/Bud.9 apple trees at 10 mm or 20 mm fruit diameter. Treatments were applied to the point of drip to individual whole trees in a completely randomized design with five (2010) and six (2011) replications. When ACC was applied at 20 mm, there was a linear dose relationship between concentration and fruit thinning in both years. ACC was ineffective at 10 mm. The naturally occurring compound ACC shows potential for use as a reliable late chemical thinner for apple.

Free access

The growth and fruiting of 10-year-old `Mcintosh'/M.7 apple trees were compared under the following weed management systems: 1)untreated control; 2) herbicide spray (paraquat + oryzalin); 3) rotary tilling applied in May, June and July; 4) rotary tilling plus herbicide (oryzalin); 5) rotary tilling plus oats sown in August. All weed control methods increased tree growth compared to the untreated control over three years. Yield and fruit size were increased by the herbicide and the rotary tilled treatment. Rotary tilling plus herbicide increased yield but fruit size was larger than controls in 1990 only. Rotary tilling plus oats produced yield and fruit size equivalent to the control. In 1989 and 1990 rotary tilling alone provided less weed control compared to the herbicide treatment, while in July 1991, the reverse was true. Rotary tilling with herbicide and with oats have demonstrated weed control comparable to or better than the herbicide treatment except for the rotary tilled plus oats treatment in 1990. There were no differences among treatments in fruit color, maturity and percent soluble solids.

Free access

Studies were initiated in Idaho and New York to determine the effects of Surround, a kaolin clay particle film product recently labeled as a crop protectant for agricultural crops, on fruit maturity and quality of `Fuji' and `Honeycrisp' apples (Malus×domestica) and fruit mineral concentration of `Fuji' apples. Surround reduced fruit weight, red color, and the incidence of sunburn of `Fuji' apples in Idaho. Sunburn did not occur on `Honeycrisp' in the New York study. In that study, Surround had no effect on fruit weight or red fruit color when applied in May and June but reduced fruit weight and red color when applied later. The reduction in red color development observed in both `Fuji' and `Honeycrisp' was not related to mineral nutrients or to a delay in fruit maturity. Surround applications resulted in undesirable residues in the basin and in the cavity of harvested fruit that were not satisfactorily removed by brushing on a commercial packing line. While effective for reducing sunburn, Surround was ineffective for increasing red fruit color of apples.

Full access

Experiments were conducted over a 5-year period to determine the effects of abscisic acid (ABA) and benzyladenine (BA) applied alone and in combination on fruit set, fruit quality, and return bloom of ‘McIntosh’ and ‘Fuji’ apples. ABA thinned in 3 of the 5 years used and it thinned ‘McIntosh’ when applied at bloom, petal fall, and at the 10-mm fruit size stage. On ‘Fuji’, ABA thinned over a range of concentrations from 150 to 1000 mg·L−1. It caused leaf yellowing on ‘McIntosh’ but not on ‘Fuji’. When BA was applied with ABA on ‘McIntosh’, even at a rate as high as 1000 mg·L−1, it either dramatically reduced or prevented leaf yellowing and leaf abscission. The usefulness of applying BA with ABA was inconclusive because of variability in thinning response. ABA advanced surface red color on ‘McIntosh’ and when combined with BA, it reversed the reduction in red color caused by BA.

Free access

Recently, some commercial apple growers have been adopting hedging as an alternative or supplement to hand-pruning. With increasing labor costs across the United States, alternatives to hand-pruning and current training systems are being considered. One management strategy involves transitioning tall spindle trees to a narrow tree wall and simplifying labor-intensive activities of apple production, such as pruning, harvesting, and fruit thinning. The objective is to form the orchard system into a “fruiting wall” that makes fruit more visible and accessible, thus facilitating harvesting. Four management practices (tall spindle; narrow tree wall with manual pruning; narrow tree wall with dormant and summer hedging; and narrow tree wall with dormant hedging, summer hedging, and root pruning) were used to convert 12-year-old ‘Brak Fuji’ apple trees from the tall spindle training system to a narrow tree wall. Photosynthetically active radiation (PAR) and ultraviolet light levels within the canopies were improved by summer hedging, but they were still low for all treatments. Light within the canopy was improved most when root pruning was included. Specific leaf weight was not significantly impacted by hedging or root pruning. Detailed spur sampling showed that treatments had no effect on vegetative or reproductive growth on 2- to 3-year-old wood. Although dormant plus summer hedging alone did not affect shoot length, the combination of hedging and root pruning caused a significant reduction in terminal shoot length. Red fruit color was only improved with dormant hedging plus summer hedging plus root pruning. Compared with dormant plus summer hedging, dormant plus summer hedging plus root pruning improved fruit set and yield, but it reduced fruit size. Without root pruning, hedging had little effect on light, specific leaf weight, flower initiation, fruit set, and fruit quality. Conversion to narrow tree walls by manual pruning resulted in more poorly colored fruit and less highly colored fruit compared with maintaining the trees as tall spindles with manual pruning.

Open Access

Multistep chemical thinning programs have been widely recommended in the eastern United States; however, adoption of bloom thinners is limited. With caustic blossom thinners, narrow effective application timings and concerns related to spring frost damage are barriers for commercial use in this region. If effective and safe, use of hormonal blossom thinners for apple would be an attractive alternative. We evaluated the effects and interactions of bloom thinners [6-benzyladenine (BA) and lime sulfur (LS, or calcium polysulfide) + stylet oil (LS+SO)] and a postbloom thinner (NAA) in the context of a multistep, carbaryl-free thinning program across three locations. Experiments were conducted in 2017 and 2018 on mature ‘Gala’ in North Carolina, Massachusetts, and Pennsylvania, USA. In four of six studies, BA at bloom increased the efficacy of postbloom NAA and reduced crop density (P < 0.08). Postbloom NAA generally increased fruit relative growth rate (RGR) and reduced crop density. However, where NAA failed to reduce crop load, there was a negative influence on RGR. BA and LS+SO increased RGR in one of six studies; however, BA was generally ineffective as a blossom thinner, whereas LS+SO was more effective. Nevertheless, BA applied at bloom may have utility as part of a multistep thinning program. As a part of a multistep thinning program, BA applied at bloom may be useful in increasing efficacy of postbloom applications, particularly when use of caustic blossom thinners is not permitted.

Open Access

Pruning is the cutting away of vegetation from plants for horticultural purposes. Pruning is known to reduce apple tree size, increase fruit size and quality, and decrease yield. Methods for studying the effects of varying degrees of severity of pruning on a whole-tree basis have used qualitative descriptions of treatments rather than repeatable whole-tree quantitative metrics. In this study, we introduce a pruning severity index calculated from the sum of the cross-sectional area of all branches on a tree at 2.5 cm from their union to the central leader divided by the cross-sectional area of its central leader at 30 cm from the graft union. This limb to trunk ratio (LTR) was then modified by successively removing the largest branches of ‘Buckeye Gala’ to achieve six severity levels ranging from LTR 0.5 to LTR 1.75, with lower values representing more extreme pruning with less whole-tree limb area relative to trunk area. Pruning treatments were applied for three consecutive years and tree growth and cropping responses were observed for the first 2 years. With increasing pruning severity the following characteristics increased after seasonal growth: number of renewal limbs, number of shoots, shoot length, number of shoot leaves, shoot leaf area, final fruit set, fruit size, yield of large fruit, crop value from large fruit, soluble solids, and titratable acidity. The following characteristics decreased: limb age, number of secondary limbs, number of spurs, number of spur leaves, spur leaf area, the ratio of spur leaf area to shoot leaf area, fruit count per tree, yield, yield efficiency, crop value from small fruit, overall crop value, and sugar:acid ratio. The LTR provides a measurable way to define and create different levels of pruning severity and achieve consistent outcomes. This allows a greater degree of accuracy and precision to dormant pruning of tall spindle apple trees. The use of the LTR to establish the level of pruning severity allows the orchard manager to set crop load potential through regulation of the canopy bearing surface. This metric is also a necessary step in the development of autonomous pruning systems.

Free access

Samples of 15 different rootstocks from mature apple trees (Malus ×domestica Borkh.) with `Starkspur Supreme Delicious' as the scion were differentiated adequately using random amplified polymorphic DNAs (RAPDs). A procedure for extraction of DNA from root material is described. Patterns of DNA from leaf tissue of young trees of 10 of the rootstocks were compared with those from root tissue of mature trees grafted on the same rootstocks and at a different location to reaffirm identification of these rootstocks. Similar patterns were obtained for a) root vs. leaf tissue and b) tissue from two locations. Except for one apparent misidentification (within a single replication), patterns for root tissue of all rootstocks matched those of the corresponding leaf tissue.

Free access