Search Results

You are looking at 21 - 30 of 59 items for

  • Author or Editor: James Altland x
Clear All Modify Search

Nitrogen (N) fertilization recommendations to achieve optimum growth are well established for many floriculture crops. Although it has been shown that plant functions can recover from N deficiency in other crops, little research has investigated the threshold beyond which a bedding plant crop is recoverable. The objective of this research was to determine the effect of N deficiency on geranium chlorophyll content and growth and then to document the degree of recovery and recovery time from N deprivation. This was determined in two experiments by monitoring chlorophyll content and growth of seedlings grown in hydroponic culture in which the N source was removed and then restored after differing lengths of time. Summarizing across both experiments, chlorophyll and foliar N levels were shown to rebound quickly after N deprivation; however, growth was reduced after just 4 days compared with plants fed constantly. Geraniums grown without N for 4 to 12 days resulted in smaller, more compact plants with lower shoot–to-root ratios. Although foliar chlorophyll and N concentration recovered from longer periods in N growth solution, geranium growth was reduced and failed to completely recover for any plant receiving more than 2 days of N-free solution.

Free access

Cation exchange capacity (CEC) describes the maximum quantity of cations a soil or substrate can hold while being exchangeable with the soil solution. Although CEC has been studied for peatmoss-based substrates, relatively little work has documented factors that affect CEC of pine bark substrates. The objective of this research was to determine the variability of CEC in different batches of pine bark and determine the influence of particle size, substrate pH, and peat amendment on pine bark CEC. Four batches of nursery-grade pine bark were collected from two nurseries, and a single source of sphagnum moss was obtained, separated in to several particle size classes, and measured for CEC. Pine bark was also amended with varying rates of elemental sulfur and dolomitic limestone to generate varying levels of substrate pH. The CEC varied with pine bark batch. Part of this variation is attributed to differences in particle size of the bark batches. Pine bark and peatmoss CEC increased with decreasing particle size, although the change in CEC from coarse to fine particles was greater with pine bark than peatmoss. Substrate pH from 4.02 to 6.37 had no effect on pine bark CEC. The pine bark batch with the highest CEC had similar CEC to sphagnum peat. Amending this batch of pine bark with sphagnum peat had no effect on composite CEC.

Full access

An experiment was conducted to test the hypothesis that either pumice or plant roots maintain air space (AS) and porosity over time, or renders substrates more resistant to shrinkage. Treatment design was a 3 × 2 factorial with three substrate types and either presence or absence of a plant. The three substrates were composed of douglas fir (Pseudotsuga menziesii) bark alone or amended with 15% or 30% (by volume) pumice. Substrates were packed in aluminum cores to facilitate measurement of physical properties with porometers at the conclusion of the experiment. Half of the cores with each of the three substrate types were packed with a single plug of ‘Autumn Blush’ coreopsis (Coreopsis sp.) (Expt. 1) or ‘Blue Prince’ holly (Ilex ×meserveae) (Expt. 2). The remaining cores were maintained in the same production environment, but without a plant. Substrate physical properties were measured before the experiment and after 48 days for coreopsis plants and 382 days for holly. Both experiments had relatively similar responses despite using different crops and production times. Summarizing in general overall treatments, AS decreased, container capacity (CC) and total porosity (TP) increased, and bulk density remained constant over time. The presence of a plant in the core tended to exacerbate the decrease in AS and the increase in core capacity. Shrinkage was decreased by the presence of a plant, but only minimally.

Full access

Moisture characteristic curves (MCC) relate the water content in a substrate to the matric potential at a given tension or height. These curves are useful for comparing the water-holding characteristics of two or more soils or soilless substrates. Most techniques for developing MCC are not well suited for measuring low tensions (0 to 100 cm H2O) in coarse substrates used in container nursery production such as those composed of bark. The objectives of this research were to compare an inexpensive modified long column method with an established method for creating low-tension MCCs and then to determine the best model for describing MCCs of bark-based soilless substrates. Three substrates composed of douglas fir (Pseudotsuga menziesii) bark alone or mixed with either peatmoss or pumice were used to compare models. Both methods described differences among the three substrates, although MCC for each method differed within a substrate type. A four-parameter log-logistic function was determined to be the simplest and most explanatory model for describing MCC of bark-based substrates.

Free access

An experiment was conducted to determine how pH and nutrient availability in douglas fir bark (DFB) substrates respond to lime and sulfur (S) rates. The treatment design was a two-by-nine factorial arrangement with two substrate types and nine pH-altering amendments. The two substrates were 100% DFB or 75 DFB:15 sphagnum peatmoss:10 pumice (by volume). Substrate pH-altering amendments included elemental S amended at either 0.6 or 2.4 kg·m−3; calcium carbonate amended at 0.6, 1.5, and 5.9 kg·m−3; calcium hydroxide amended at 4.4, 8.9, or 23.7 kg·m−3; and a nonamended control. All substrates were amended by incorporating 0.9 kg·m−3 Micromax micronutrients before potting and topdressing 8 g/pot of 14N–4.2P–11.6K Osmocote controlled-release fertilizer after potting. A group of controls was also maintained for each substrate that received no fertilizer amendment (no S, lime, Micromax, or Osmocote). Four containers of each treatment were randomly selected and harvested 4 and 8 weeks after potting. Amendment with S decreased pH with increasing rate, whereas both lime types increased pH with increasing rate. The two substrates in general responded similarly to S and lime amendments, although there were some significant effects and interactions caused by substrate type. Ammonium-N and NO3-N both decreased exponentially with increasing substrate pH, whereas water-extractable phosphorus decreased linearly with increasing pH. Water-extractable potassium, calcium, magnesium, and sodium responded quadratically to increasing pH by initially decreasing and then increasing. The micronutrients boron and iron decreased with increasing pH, whereas DTPA extractions of manganese, zinc, and copper initially increased and then decreased over the range of observed pH.

Free access

Paclobutrazol is a plant growth retardant commonly used on greenhouse crops. Residues from paclobutrazol applications can accumulate in recirculated irrigation water. Given that paclobutrazol has a long half-life and potential biological activity in parts per billion concentrations, it would be desirable to measure paclobutrazol concentration in captured irrigation supplies. However, there are no standard protocols for collecting this type of sample. The objective of this research was to determine if sample container material or storage temperature affect paclobutrazol stability over time. In two experiments, paclobutrazol was mixed in concentrations ranging from 0.04 to 0.2 mg·L−1 and stored in polyethylene, clear glass, or amber glass containers at temperatures of either 4 or 20 °C. Paclobutrazol concentration was measured at 3, 14, and 30 days after the start of each experiment. Across the two experiments, there were no consistent trends in reduction of paclobutrazol concentration with respect to container material or storage temperature. In the first experiment, there was an average of 5% reduction across all treatments from day 0 to 30, whereas in the second experiment, concentration did not decrease over the 30-day time period. These data suggest that paclobutrazol is stable in collected water samples for at least 30 days, and that either glass or polyethylene containers are suitable for collecting greenhouse water samples for analysis of paclobutrazol concentration. A minimum volume of 100 mL was determined to be the optimum to analyze water samples with diverse paclobutrazol concentrations.

Free access

A study evaluating the effects of varying levels of chilling on foliar budbreak of linden (Tilia spp.) culivars was initiated in 1999 in Auburn, Ala. [lat. 32°36'N, long. 85°29'W, elevation 709 ft (216m), USDA Hardiness Zone 8a]. Littleleaf linden (T. cordata) `Greenspire' and `Fairview' required the most chilling to produce measurable budbreak and exhibited the lowest budbreak percentages. Silver linden (T. tomentosa) `Sterling' and american linden (T. americana) `Redmond' needed the fewest hours of chilling to produce budbreak and exhibited the highest budbreak percentages. `Sterling' was the top performer in foliar budbreak percentage and in subsequent growth. Although `Redmond' attained high budbreak numbers, its overall growth during the following growing season was inferior to that of `Sterling', `Greenspire' and `Fairview'. This information can contribute to the development of regional planting recommendations, which can aid in the selection of lindens suitable for the area in which they will be grown. Calculated r2 values indicated the models used provided a good fit to the data for all cultivars.

Full access

Experiments were conducted in Auburn, AL, and Aurora, OR, to evaluate herbicides for pre-emergence liverwort (Marchantia polymorpha) control. Granular pre-emergence herbicide efficacy varied by location and product. Summarizing across all experiments, flumioxazin and oxadiazon provided the most effective control in Alabama, whereas flumioxazin and oxyfluorfen + oryzalin provided the most effective control in Oregon. Sprayed quinoclamine provided pre-emergence liverwort control, but efficacy and duration of control were reduced compared with granular herbicides.

Full access

Relative salt tolerance of eight Berberis thunbergii (japanese barberry) cultivars (B. thunbergii ‘Celeste’, ‘Kasia’, ‘Maria’, ‘Mini’, and ‘Talago’; B. thunbergii var. atropurpurea ‘Concorde’, ‘Helmond Pillar’, and ‘Rose Glow’) was evaluated in a greenhouse experiment. Plants were irrigated with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) once a week for 8 weeks. At 4 weeks after treatment, all barberry cultivars in EC 5 had minimal foliar damage with visual scores of 4 or greater (visual score 0: dead, 5: excellent). At 8 weeks after treatment, in EC 5, ‘Helmond Pillar’, ‘Maria’, ‘Mini’, and ‘Rose Glow’ plants exhibited slight foliar salt damage with an average visual score of 3.5, whereas ‘Celeste’, ‘Concorde’, ‘Kasia’, and ‘Talago’ had minimal foliar salt damage with an averaged visual score of 4.4. However, most barberry plants in EC 10 exhibited severe foliar salt damage 4 weeks after treatment with the exception of ‘Concorde’ and were dead 8 weeks after treatment. Compared with control, at the end of the experiment (8 weeks of treatments), shoot dry weight (DW) of ‘Celeste’, ‘Helmond Pillar’, ‘Maria’, and ‘Rose Glow’ in EC 5 was reduced by 47%, 47%, 50%, and 42%, respectively, whereas shoot DW of ‘Concorde’, ‘Kasia’, ‘Mini’, and ‘Talago’ in EC 5 did not change. In EC 10, shoot DW of ‘Celeste’, ‘Concorde’, ‘Kasia’, and ‘Talago’ was reduced by 75%, 35%, 55%, and 46%, respectively. The averaged sodium (Na) concentration of all barberry cultivars in EC 5 and EC 10 was 34 and 87 times, respectively, higher than the control, whereas leaf chloride (Cl) concentration of all barberry cultivars in EC 5 and EC 10 was 14–60 and 29–106 times, respectively, higher than the control. Growth, visual quality, and performance index (PI) were all negatively correlated with leaf Na and Cl content in all cultivars, suggesting that excessive Na and Cl accumulation in the leaf tissue led to growth reduction, salt damage, and death. In summary, ‘Concorde’, ‘Kasia’, and ‘Talago’ were relatively salt tolerant; ‘Helmond Pillar’, ‘Maria’, ‘Mini’, and ‘Rose Glow’ were relatively salt sensitive; and ‘Celeste’ was in between the two groups. Generally, barberry plants had moderate salt tolerance and can be irrigated with marginal water at an EC of 5 dS·m−1 or lower with slight foliar damage.

Free access

The pour-through (PT) method is used in greenhouse and nursery production to monitor nutrient availability in soilless substrates. Efficacy of this method is based on the assumption that chemical properties of extracted solutions remain stable from the moment of collection until analysis. Extracted substrate solution can be analyzed directly in the greenhouse or sent to laboratories for complete nutritional analysis; thus, proper sample preservation methods (e.g., filtration and low temperatures) are critical for reducing sample contamination or degradation during storage. However, evidence of how these preservation methods affect chemical characteristics of PT samples is limited. The objective of this study was to evaluate the effect of storage time, storage temperature, and filtration of PT samples on pH, electrical conductivity (EC), and nutrient concentrations from pine bark– and peat-based substrates. PT extracts were obtained from liquid-fertilized fallow pots of either 100% milled pine bark (Expt. 1) or a 4 sphagnum peat: 1 perlite (by volume) substrate (Expt. 2). Aliquots of PT extract were either filtered or nonfiltered and then stored in plastic bottles at −22, 4, or 20 °C. EC, pH, and nutrient concentrations were analyzed at 0, 1, 7, and 30 days after PT sample collection. EC and pH in PT extracts of peat and pine bark, respectively, changed 1 day after collection. Storage time had the greatest effect on nutrient concentrations of samples stored at 20 °C. However, at day 30, nutrient concentrations had also changed in samples stored at 4 and −22 °C. Analytes that fluctuated most in both experiments and across all preservation treatments were dissolved organic carbon, total dissolved nitrogen, NO3 -N, and PO4 3−-P, whereas Ca2+, Mg2+, and SO4 2−-S were more stable in PT samples. This research suggests EC and pH should be analyzed immediately, whereas samples requiring nutrient analysis should be filtered immediately after collection, stored at 4 or −22 °C (preferably −22 °C), and analyzed within 7 days of collection.

Open Access