Search Results

You are looking at 21 - 28 of 28 items for

  • Author or Editor: J. L. Maas x
Clear All Modify Search

Anthracnose crown rot of cultivated strawberry (Fragaria ×ananassa Duchesne ex Rozier) has been a major disease problem in the strawberry producing regions of the southeastern United States since the early 1970s. Chemical controls are often inadequate, but use of resistant cultivars is seen as a credible option for managing this disease. Only a small portion of Fragaria L. germplasm has been screened for resistance to anthracnose crown rot. A core subset of the Fragaria collection maintained at the U.S. Department of Agriculture National Clonal Repository in Corvallis, OR, has been constructed to contain an elite group of native F. virginiana Mill. and F. chiloensis (L.) Mill. This collection, referred to as the “core collection,” has been characterized for many horticultural traits, including reactions to several common foliar diseases, resistance to black root rot (causal organisms unknown), and resistance to northern root-knot nematode (Meloidogyne hapla Chitwood) and root-lesion nematode [Pratylenchus penetrans (Cobb) Filipjev & Shuurmans Stekhoven]. Our objective was to evaluate the core collection for resistance to a selection of isolates of three Colletotrichum Corda species known to cause strawberry anthracnose, Colletotrichum fragariae A.N. Brooks, Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz. [teleomorph Glomerella cingulata (Stoneman) Spauld. & H. Schrenk], and Colletotrichum acutatum J.H. Simmonds (teleomorph Glomerella acutata J.C. Guerber & J.C. Correll). No Fragaria subspecies or geomorph was more resistant than any other; rather, individual genotypes within these groups were identified as sources from which resistance can be obtained. Collecting germplasm in areas of intense disease pressure may not be as beneficial as one might assume, at least where anthracnose crown rot disease is concerned.

Free access

Diseases affecting strawberries have been of major concern in recent years because of their widespread occurrence and potential for yield loss. Anthracnose caused by the fungus Colletotrichum acutatum is one of the most serious disases of strawberry worldwide. Although chemical controls are being used to treat anthracnose, generating disease resistant plants is a more attractive solution to the problem because chemicals can pose a health hazard, have a negative impact on the environment and may only be moderately effective. Tissue culture-induced (somaclonal) variation provides us with one strategy for generating disease-resistant genotypes. An in vitro screening system was used to evaluate several commercially important cultivars, Chandler, Delmarvel, Honeoye, Latestar, Pelican and Sweet Charlie, and shoots regenerated from leaf explants of these cultivars for resistance to C. acutatum isolate Goff (highly virulent). Somaclones with increased levels of anthracnose resistance were identified for all the cultivars. The greatest increases in disease resistance were observed for somaclones of cultivars Chandler, Pelican and Sweet Charlie that exhibited 6.8-, 12-, and 4.2-fold increases in resistance, respectively. These studies provide evidence that: 1) in vitro screening can be used to evaluate strawberry germplasm for anthracnose resistance, 2) soma-clonal variation is influenced by stawberry genotype, and 3) generating somaclonal variants may be a feasible approach to obtaining strawberry plants with increased levels of anthracnose resistance.

Free access

Two dominant sequence characterized amplified region (SCAR) markers (linked at 3.0 cM, coupling phase) were constructed for the strawberry (Fragaria ×ananassa Duch.) gene Rpf1. This gene confers resistance to red stele root rot, caused by the soil-born fungus Phytophthora fragariae Hickman var. fragariae. The SCAR markers were developed originally from the sequence of RAPD OPO-16C(438) that is linked in repulsion phase to the Rpf1 allele. This SCAR primer set produced multiple bands in the resistant test progeny and in some of the susceptible progeny; therefore, new SCARs were developed based on the sequence differences among these bands. These new SCARs were linked in coupling phase to the Rpf allele and mapped to the same location as the original RAPD OPO-16C(438). The SCAR markers, as well as some additional RAPD markers known to be linked to Rpf1, were shown to be highly conserved in linkage to the gene based on examination of 133 European and North American Fragaria L. sp. cultivars and breeding selections. These flanking RAPD and SCAR-PCR markers can be used in breeding programs for the selection of red stele (Rpf1) resistance.

Free access