Search Results

You are looking at 21 - 30 of 42 items for

  • Author or Editor: Guihong Bi x
Clear All Modify Search

A study was conducted to determine whether the nitrogen (N) status of nursery-grown green ash (Fraxinus pennsylvanica ‘Summit’) trees in the autumn is related to bud necrosis during the following spring. In 2005, different rates of N from urea formaldehyde (UF) or a controlled-release fertilizer (CRF) containing ammonium nitrate were applied during the growing season to green ash trees and leaves were sprayed or not with urea in the autumn. Biomass and N content was determined in Autumn 2005 and Spring 2006, and stem biomass and bud necrosis were evaluated for necrosis in Spring 2006. Trees with low N content in Autumn 2005 grew less in Spring 2006 but bud necrosis was more prevalent on trees grown at the highest N rate. Compared with trees grown with a similar amount of N from UF, growing trees with CRF altered N allocation in 2005 and the relationship between carbon (C) and N dynamics (import, export, and metabolism) in stems in 2006. Additionally, trees grown with CRF had less total shoot biomass in Spring 2006 and more bud failure than trees grown with a similar N rate from UF. Significant relationships between bud failure and N status and C/N ratios in different tissues suggest that a combination of tree N status and the balance between N and C in certain tissues plays a role in the occurrence of bud failure of green ash trees in the spring.

Full access

Mineral nutrient uptake of Encore® azalea ‘Chiffon’ (Rhododendron sp.) affected by nitrogen (N) rate, container type, and irrigation frequency was investigated. One-year-old azalea plants were planted in two types of 1-gallon containers: a black plastic container or a biodegradable container (also referred to as a biocontainer) made from recycled paper. Azalea plants were fertilized with 250 mL of N-free fertilizer twice weekly plus N rates of 0, 5, 10, 15, or 20 mm from ammonium nitrate (NH4NO3). All plants were irrigated daily with the same amount of water through one or two irrigations. Plants fertilized without N had the lowest concentrations of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) averaged in the entire plant, which were at deficient levels for azalea species. High N rates of 15 or 20 mm resulted in the highest plant average concentrations of P, K, Ca, and Mg. Concentrations of micronutrients including iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and boron (B) showed varied trends affected by different treatments. With high N rates of 15 and 20 mm, paper biocontainers increased uptake of both macro- and micronutrients in terms of total nutrient content (mg or μg per plant) compared with plastic containers. One irrigation per day increased root concentrations of Cu and Zn and root contents of Fe, Zn, Cu, and B, but decreased leaf K concentration compared with two irrigations per day. The beneficial effects of high N rates and biocontainers on mineral nutrient uptake of Encore® azalea ‘Chiffon’ likely indirectly occurred through increasing plant growth.

Free access

The form of nitrogen (N) in fertilizer can influence plant growth, nutrient uptake, and physiological processes in the plant. However, few studies have been conducted on the effects of N form on tall bearded (TB) iris (Iris germanica L.). In this study, five NH4:NO3 ratios (0:100, 25:75, 50:50, 75:25, and 100:0) were applied to investigate the response of TB iris to different N form ratios. NH4:NO3 ratios in fertilizer did not affect the leaf, root, and rhizome dry weight, or total plant dry weight. Plant height and SPAD reading were affected by NH4:NO3 ratios in some months, but not over the whole growing season. Neither spring nor fall flowering was influenced by NH4:NO3 ratios. Across the whole growing season, leachate pH was increased by higher NH4:NO3 ratios. At the end of the growing season, concentrations of phosphorous (P), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu) in leaf; calcium (Ca), magnesium (Mg), Mn, boron (B) in root; and N, P, Mg, Fe, Mn, and Zn in rhizome tissues were affected by NH4:NO3 ratios. Greater NH4:NO3 ratios increased the uptake of Fe, Mn, and Zn. The net uptake of N was unaffected by NH4:NO3 ratios, which indicates TB iris may not have a preference for either ammonium or nitrate N.

Free access

The influence of irrigation frequency (same amount of water per day given at different times) on nutrient uptake of container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ) grown with different rates of nitrogen (N) fertilizer was evaluated. Increased N application rate increased nutrient uptake and plant dry biomass. Irrigation frequency did not significantly influence total plant dry biomass; however, more frequent irrigation decreased net uptake of several nutrients including phosphorus (P), boron (B), and manganese (Mn) uptake in all cultivars; potassium (K), copper (Cu), and zinc (Zn) uptake in AZ and ER; sulfur (S) uptake in ER and PJM; and iron (Fe) uptake in AZ. Additionally, more frequent irrigation of evergreen cultivars increased calcium (Ca) uptake. Covariate analyses were used to compare nutrient uptake among cultivars and irrigation treatments after accounting for the variability in nutrient uptake attributable to differences in biomass and N uptake. For most nutrients, the influence of irrigation frequency on uptake was partially attributable to differences in biomass and N uptake. After accounting for the variability in nutrient uptake associated with biomass or N uptake, increased irrigation frequency decreased P, S, B, Cu, and Mn uptake only in ER and increased Ca uptake in the two evergreen cultivars. Differences in nutrient uptake among cultivars in response to irrigation treatments were related to water and N availability during production and their combined influence on water stress, nutrient uptake, and biomass partitioning. Estimates of nutrient demand and uptake efficiency using nutrient concentrations and ratios are discussed in relation to nutrient management differences for different cultivars and irrigation treatments.

Free access

The influence of fall sprays with urea on the uptake of nutrients other than nitrogen (N) was assessed using 1-year-old container-grown Rhododendron L. (Rhododendron ‘H-1 P.J.M’) and azalea (Rhododendron ‘Cannon's Double’) grown with different rates of N. Plants were grown with a complete fertilizer containing different N rates from May to Sept. 2004 sprayed or not with urea in the fall of 2004 and grown with a complete fertilizer containing different N rates in the spring of 2005. Urea sprays altered uptake of nutrients other than just N although fertilizer application with other nutrients ceased before plants were sprayed with urea. Across a wide range of plant sizes and N status, urea sprays increased net phosphorus (P), copper (Cu), and manganese (Mn) uptake and decreased net potassium (K) and magnesium (Mg) uptake during the year of urea application. Spraying plants with urea altered nutrient demand and storage in different plant structures during the winter. For azalea, urea sprays increased P demand by roots, Mn demand by 2004 stems, and Cu demand by stems. Urea also decreased storage of K in roots and 2004 stems of azalea and Mg in roots. For rhododendron, urea sprays increased P demand by 2003 stems and 2004 leaves and Mn demand by 2004 leaves. Urea sprays also decreased storage of K and Mg in 2004 leaves of rhododendron. For both cultivars, urea sprays increased mobilization of iron (Fe) from storage and demand for Fe in stems. Spraying Rhododendron with urea in the fall altered uptake and demand for certain nutrients during the following spring. Urea sprays in the fall of 2004 increased uptake and possibly demand for P, K, and sulfur during the spring of 2005 for both cultivars, the uptake of calcium by rhododendron, and the uptake of Mg and Mn by azalea. Our results indicate that when growers spray plants with urea in the fall, spring fertilizer practices may need to be modified to account for increased uptake or demand of certain nutrients.

Free access

One deciduous cultivar of Rhododendron L., Gibraltar (AZ), and two evergreen cultivars, P.J.M. Compact (PJM) and English Roseum (ER), were grown in containers for 1 year to determine the effects of irrigation frequency during container production on plant performance the next spring when the plants were transplanted into the landscape. While in the containers, each cultivar was irrigated once or twice daily, using the same amount of water per day, and fertilized with complete nutrient solutions containing 0, 35, 70, or 140 mg·L−1 nitrogen (N). Three months after transplanting into the landscape, nutrient uptake, growth, and flowering were evaluated. In general, the effects of irrigation frequency in containers on performance in the landscape differed between the deciduous cultivar and the evergreen cultivars. In AZ, less frequent irrigation in containers had a pre-conditioning effect that resulted in greater vegetative growth in the landscape but less reproductive growth. In contrast, less frequent irrigation reduced vegetative growth of evergreen cultivars in the landscape and improved flowering. Different growth responses to irrigation frequency between deciduous and evergreen cultivars appeared to be related to differences in timing of nutrient uptake and mobilization. In the deciduous cultivar, less frequent irrigation increased nutrient reserves and improved the ability of the plants to absorb and use nutrients after transplanting, but in the evergreen cultivars, it generally decreased nutrient uptake after transplanting. Less frequent irrigation also altered plant attributes that are important to consumers, including developing a sparser canopy in ER and a fuller canopy in PJM, and producing more but smaller inflorescences in both cultivars. Landscape performance was related to plant nutrition in containers; however, irrigation frequency in containers disrupted relationships between nutrition and performance in all three cultivars. Our results indicate that irrigation frequency during container production of Rhododendron results in a tradeoff between vegetative and reproductive growth the next spring when the plants are in the landscape.

Free access

This study investigated how spring nitrogen (N) application affects N uptake and growth performance in tall bearded (TB) iris ‘Immortality’ (Iris germanica L.). Container-grown iris plants were treated with 0, 5, 10, 15, or 20 mm N from 15NH4 15NO3 through fertigation using a modified Hoagland’s solution twice a week for 6 weeks in Spring 2013. Increasing N rate increased plant height, total plant dry weight (DW), and N content. Total N content was closely related to total plant DW. The allocation of N to different tissues followed a similar trend as the allocation of DW. In leaves, roots, and rhizomes, increasing N rate increased N uptake and decreased carbon (C) to N ratio (C/N ratio). Leaves were the major sink for N derived from fertilizer (NDFF). As N supply increased, DW accumulation in leaves increased, whereas DW accumulation in roots and rhizomes was unchanged. This indicates increasing N rate contributed more to leaf growth in spring. Nitrogen uptake efficiency (NupE) had a quadratic relationship with increasing N rate and was highest in the 10 mm N treatment, which indicates 10 mm was the optimal N rate for improving NupE in this study.

Free access

One-year-old liners of Encore® azalea ‘Chiffon’ (Rhododendron sp.) were transplanted in Apr. 2013 into two types of one-gallon containers: black plastic container and paper biodegradable container. Azalea plants were fertilized with 250 mL of nitrogen (N) free fertilizer solution twice weekly plus N rate of 0, 5, 10, 15, or 20 mm from ammonium nitrate (NH4NO3). All plants were irrigated with the same total volume of water through one or two irrigations daily. Plant growth and N uptake in response to N fertilization, irrigation frequency, and container type were investigated. The feasibility of biodegradable paper containers was evaluated in 1-year production of Encore® azalea ‘Chiffon’. Paper biocontainers resulted in increased plant growth index (PGI), dry weights (leaf, stem, root, and total plant dry weight), leaf area, and root growth (root length and surface area) compared with plastic containers using N rates from 10 to 20 mm. Biocontainer-grown plant had more than twice of root length and surface area as plastic container–grown plant. Leaf SPAD reading increased with increasing N rate from 0 to 20 mm. One irrigation per day resulted in greater PGI, root dry weight, root length, root surface area, and root N content than two irrigations per day. Higher tissue N concentration was found in plants grown in plastic containers compared with those grown in biocontainers when fertilized with 15 or 20 mm N. However, N content was greater for plants grown in biocontainers, resulting from greater plant dry weight. The combinations of plastic container and one irrigation per day and that of 20 mm N and one irrigation per day resulted in best flower production, 21.9 and 32.2 flowers per plant, respectively. Biocontainers resulted in superior vegetative growth of azalea plant compared with plastic containers with sufficient N supply of 10, 15, and 20 mm.

Free access

Growth, nitrogen (N) uptake, and N storage were assessed in transplanted 1-year-old rhododendron liners. Two evergreen cultivars, Rhododendron ‘P. J. Mezitt Compact’ (PJM) and R. ‘English Roseum’ (ER), and one deciduous cultivar, R. ‘Gibraltar’ (AZ), were transplanted into 1-gal. pots and given liquid fertilizer with (+N) or without (–N) N. Increased N availability increased growth after July (ER, PJM) or August (AZ), and resulted in three to five times more total biomass. Biomass continued to increase after stem elongation and leaf production ceased. Nitrogen uptake was correlated with growth of all plant structures on AZ, whereas N uptake was only correlated with stem and leaf growth on evergreen cultivars. The rate of N uptake was highest before July for AZ (1.9 mg·d−1) and in August and September for the evergreen cultivars (≈5 mg·d−1). Thirteen percent to 16% of total N uptake from between May and February occurred after N fertilization ceased at the beginning of September. Plants contained the most N in October (AZ), November (PJM), or December (ER). Biomass loss after November accounted for a loss of 14% to 48% of the maximum total plant N content. Nitrogen demand by roots and stems increased from May to February in all cultivars. The role of new and old leaves in N storage on evergreen cultivars varied with cultivar and time. Differences in N storage between the evergreen cultivars occurred primarily in their roots and leaves. Over the winter, PJM stored more N in its roots, whereas ER stored more N in its leaves. Changes in N concentrations and contents in different plant structures after November indicate that, during early winter, N stored in other structures moves to roots and old stems of PJM, old stems of ER, and roots and new and old stems of AZ. These results suggest that fertilizer application strategies for transplanted liners of these cultivars should include low N availability after transplanting followed by high N availability in mid to late summer. This type of strategy will not only improve N uptake efficiency from fertilizer, but also will minimize N loss from the containers. The results also demonstrated that N uptake in the autumn may play an important role in supplementing plant N reserves required for growth during the next season as well as for balancing N losses incited by leaf abscission, root turnover, and maintenance functions that occur over winter.

Free access

The influence of nitrogen (N) fertilizer application on plant allocation, uptake, and demand for other essential nutrients was evaluated from May 2005 to Feb. 2006 in evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ) grown in containers filled with soilless substrate. Net nutrient uptake and losses were calculated using piecewise regression and uptake efficiency, root absorption capacity, aboveground demand, nutrient use efficiency, and uptake ratios between N and other nutrients (N ratios) were calculated using net uptake between harvest dates. Nitrogen application increased uptake rate of all nutrients, enhanced late-season uptake of many nutrients, and increased the rate of nutrient loss during the winter. Nutrient uptake often occurred as late as November in plants grown with N but was usually undetectable after September in plants grown without additional N fertilizer. Nutrient losses during the winter were not always associated with biomass loss and were related to differences in preferential nutrient allocation to different structures and the plant's ability to export nutrients before biomass loss. Plants with a greater potential for rapid growth were more capable of later-season nutrient uptake than plants with slower growth rates. Nitrogen availability altered N ratios indicating that when adding N to container-grown Rhododendron, fertilizers with higher ratios of N/phosphorus (PJM, AZ), N/calcium (PJM, ER), N/boron (PJM AZ), N/copper (PJM, ER), and N/iron (PJM, ER) and lower ratios of N/potassium (PJM, ER, AZ), N/sodium (PJM, ER, AZ), N/calcium (AZ), N/boron (ER), N/manganese (AZ), and N/zinc (ER) may be needed to optimize growth and minimize nutrient inputs. Increasing N availability altered uptake efficiency, root absorption capacity, aboveground demand, and nutrient use efficiency for several nutrients, indicating that changes in N management practices need to consider how altering N application rates may influence the plant's ability to take up and use other nutrients. This information can be used to develop fertilizer formulations to minimize excess application of nutrients and to evaluate the potential effects of altering N management practices on use of production resources. Our results indicate that nutrient management strategies for perennial crops such as Rhododendron need to take into consideration not only the nutrient demand for current growth, but also how to optimize nutrient availability for uptake that contributes to future growth potential and end-product quality.

Free access