Search Results

You are looking at 21 - 24 of 24 items for

  • Author or Editor: Frederick G. Gmitter Jr x
Clear All Modify Search

Two adjacent rootstock trials were conducted in the east coast Indian River region of Florida with ‘Marsh’ grapefruit (Citrus paradisi Macf.) scion. The objective was to find rootstocks to replace sour orange (C. aurantium L.) because of losses to citrus tristeza virus, and to replace Swingle citrumelo [C. paradisi × Poncirus trifoliata (L.) Raf.] because of its limited usefulness in certain poorly drained coastal sites. The trials were conducted in randomized complete blocks with 12 single-tree replicates spaced 4.6 × 6.9 m. The soils were of the Wabasso and Riviera series. The first trial consisted largely of trees on citrange [C. sinensis (L.) Osb. × P. trifoliata] and citrumelo rootstocks, ‘Cipo’ sweet orange (C. sinensis), and various hybrid rootstocks. The second trial involved mandarin rootstocks (C. reticulata Blanco) and sour orange and related rootstocks. Trees were grown for 7 years and yield and juice quality data were collected for the last 4 years of that period. Those rootstocks identified as the most promising, based on combinations of smaller tree size and high productivity and juice quality, were two Sunki mandarin × Swingle trifoliate orange (TF) hybrids (C-54, C-146), a Sunki mandarin × Flying Dragon TF hybrid, C-35 citrange, and a Cleopatra mandarin × Rubidoux TF hybrid (×639). The trees on these five rootstocks cropped well leading to soluble solids (SS) values of 3000 to 4000 kg/ha when they were 7-years old. The trees on C-54 and C-146 were relatively large, somewhat taller than trees on sour orange, whereas those on C-35 and the Sunki × Flying Dragon hybrid were smaller and similar to sour orange in tree height. Fruit quality among the trees on C-35 and the Sunki × Flying Dragon hybrid had relatively high SS concentration (better than sour orange), and the other three rootstocks had relatively lower solids concentration (poorer than sour orange). The trees on C-35 and the Sunki × Flying Dragon hybrid would be good candidates for higher density orchards.

Free access

Somatic hybridization through protoplast fusion has proven to be a valuable technique in citrus for producing unique allotetraploid breeding parents that combine elite diploid selections. Many citrus somatic hybrids are now flowering and being used in interploid crosses to generate triploid hybrids that produce seedless fruit, a primary objective of citrus breeding programs. Most of the early somatic hybrids produced for mandarin improvement combined sweet oranges with mandarins, because the performance of sweet oranges in tissue/protoplast culture generally exceeds that of most mandarin selections. However, a high percentage of triploid progeny from interploid crosses using sweet orange + mandarin somatic hybrids as the tetraploid parent produce fruit that are difficult to peel. We report nine new allotetraploid somatic hybrids and five new autotetraploids from somatic fusion experiments involving easy-peel mandarin parents. These tetraploids can be used in interploid crosses to increase the percentage of seedless triploid progeny producing easy-to-peel fruit. Ploidy level of the new tetraploids was determined by flow cytometry and their genetic origin by expressed sequence tag–simple sequence repeat marker analysis.

Free access

Protoplast culture following polyethylene glycol-induced fusion resulted in the regeneration of vigorous tetraploid somatic hybrid plants from eight complementary parental rootstock combinations: Citrus reticulata Blanco (Cleopatra mandarin) + C. aurantium L. (sour orange), C. reticulata (Cleopatra mandarin) + C. jambhiri Lush (rough lemon), C. reticulata (Cleopatra mandarin) + C. volkameriana Ten. & Pasq. (Volkamer lemon), C. reticulata (Cleopatra mandarin) + C. limonia Osb. (Rang-pur), C. sinensis (L.) Osb. (Hamlin sweet orange) + C. limonia (Rangpur), C. aurantium (sour orange) + C. volkameriana (Volkamer lemon) zygotic seedling, C. auruntium hybrid (Smooth Flat Seville) + C. jambhiri (rough lemon), and C. sinensis (Valencia sweet orange) + Carrizo citrange [C. paradisi Macf. × Poncirus trifoliata (L.) Raf.]. Diploid plants were regenerated from nonfused callus-derived protoplasts of Valencia sweet orange and Smooth Flat Seville and from nonfused leaf protoplasts of sour orange, Rangpur, rough lemon, and Volkamer lemon. Regenerated plants were classified according to leaf morphology, chromosome number, and leaf isozyme profiles. All somatic hybrid plants were tetraploid (2n = 4× = 36). One autotetraploid plant of the Volkamer lemon zygotic was recovered, apparently resulting from a homokaryotic fusion. These eight new citrus somatic hybrids have been propagated and entered into field trials.

Free access

Citrus (Citrus sp.) germplasm collections are a valuable resource for citrus genetic breeding studies, and further utilization of the resource requires knowledge of their genotypic and phylogenetic relationships. Diverse citrus accessions, including citron (Citrus medica), mandarin (Citrus reticulata), pummelo (Citrus maxima), papeda (Papeda sp.), trifoliate orange (Poncirus trifoliata), kumquat (Fortunella sp.), and related species, have been housed at the Florida Citrus Arboretum, Winter Haven, FL, but the accessions in the collection have not been genotyped. In this study, a collection of 80 citrus accessions were genotyped using 1536 sweet orange–derived single nucleotide polymorphism (SNP) markers, to determine their SNP fingerprints and to assess genetic diversity, population structure, and phylogenetic relationships, and thereby to test the efficiency of using the single genotype-derived SNP chip with relatively low cost for these analyses. Phylogenetic relationships among the 80 accessions were determined by multivariate analysis. A model-based clustering program detected five basic groups and revealed that C. maxima introgressions varied among mandarin cultivars and segregated in mandarin F1 progeny. In addition, reciprocal differences in C. maxima contributions were observed among citranges (Citrus sinensis × P. trifoliata vs. P. trifoliata × C. sinensis) and may be caused by the influence of cytoplasmic DNA and its effect on selection of cultivars. Inferred admixture structures of many secondary citrus species and important cultivars were confirmed or revealed, including ‘Bergamot’ sour orange (Citrus aurantium), ‘Kinkoji’ (C. reticulata × Citrus paradisi), ‘Hyuganatsu’ orange (Citrus tamurana), and palestine sweet lime (Citrus aurantifolia). The relatively inexpensive SNP array used in this study generated informative genotyping data and led to good consensus and correlations with previously published observations based on whole genome sequencing (WGS) data. The genotyping data and the phylogenetic results may facilitate further exploitation of interesting genotypes in the collection and additional understanding of phylogenetic relationships in citrus.

Free access