Search Results

You are looking at 21 - 27 of 27 items for

  • Author or Editor: Eric Curry x
Clear All Modify Search
Authors: and

Effects of Lovastatin treatment on ethylene production, α-farnesene biosynthesis, and scald development were studied using `Delicious' and `Granny Smith' apples [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] and `d'Anjou' pears (Pyrus communis L.) stored in air at 0 °C. During 6 months storage, Lovastatin did not affect internal ethylene concentration but reduced α-farnesene production in a concentration dependent manner in both apples and pears. Lovastatin reduced scald at 0.63 mmol·L-1 and inhibited scald completely at 1.25 or 2.50 mmol·L-1 in `Delicious' and `Granny Smith' apples. In `d'Anjou' pears, Lovastatin at concentrations from 0.25 to 1.25 mmol·L-1 inhibited scald completely. After 8 months storage, inhibition of scald in both apples and pears by Lovastatin was concentration-dependent but none of the concentrations totally eliminated scald. Compared with 11.8 mmol·L-1 diphenylamine, Lovastatin treatment reduced scald to the same level at 1.25 mmol·L-1 in `d'Anjou' pear and 2.50 mmol·L-1 in `Delicious' and `Granny Smith' apples. Lovastatin did not affect apple or pear fruit color, firmness, soluble solids content, or titratable acidity during storage in either apple or pear compared with the controls. Chemical name used: [1S-[1a (R °), 3α, 7β, 8β (2S °, 4S °), 8αβ]]-1,2,3,7,8,8α-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthaienyl 2-methylbutanoate (Lovastatin).

Free access

Vegetable oil emulsion (VOE) was applied to `Gala' and `Fuji' apple (Malus ×domestica) trees after harvest to hasten defoliation and reduce apple scab (Venturia inaequalis). Applied at 2%, 4%, or 6%, VOE applied to whole trees in the fall induced leaf drop, with the highest concentration causing the most defoliation. At the same concentration, VOE applied in early, mid, or late October had similar effects on leaf drop. VOE treatment reduced respiration and stimulated ethylene production in shoot tissue within 24 hours of application. None of the treatments affected tree hardiness during the winter, or shoot growth the following spring. Return bloom density was unaffected; however, VOE tended to delay anthesis by 2 to 5 days. Under controlled conditions, `Gala' and `Fuji' trees inoculated with scab spores developed 48% and 65% scab, respectively. VOE-induced defoliation reduced scab by 50% to 65%. VOE-induced defoliation plus manual leaf removal from the orchard floor, or VOE-induced defoliation in late fall (15 Oct.-15 Nov.) plus application of 5% lime sulfur in early spring, controlled scab to <5% on both leaves and fruit. Neither lime sulfur nor urea applied in late fall at 2% induced defoliation or controlled scab. VOE at 4% plus 2% lime sulfur and/or 2% urea applied in late fall, however, defoliated `Gala' trees effectively and controlled scab on fruit to <7% the following spring. In the `Fuji' planting, the combination of 4% VOE plus 2% lime sulfur and 2% urea reduced scab on fruit from 21% in controls to 0%.

Full access

Abstract

Paclobutrazol (PP333) is a promising new bioregulant for controlling size of trees and significantly reducing the need for dormant and summer pruning. ‘Delicious’ trees were treated with a high rate of PP333, which resulted in some smaller, flattened fruit with shorter pedicels. Application of either gibberellin A4+7 plus 6-benzylamino purine (Promalin) or gibberellin A3 (GA3) before or at full bloom increased fruit size, pedicel length, and leaf size on PP333-treated trees.

Open Access

Abstract

In late September of 1981 and 1982, eight-year-old ‘Oregon-spur Delicious’ apple (Malus domestica) trees on M7 rootstock were sprayed immediately after harvest with 500 ppm AVG. The following spring of both years the number of spur leaves and lateral shoots on one-year-old wood was increased on treated trees. Total N was reduced and sucrose and fructose were increased in dormant one-year-old shoots of AVG-treated trees. Cold hardiness was not affected. Throughout the dormant period both apical and one-year-old lateral buds excised from treated trees and incubated in the dark at 24°C produced less ethylene over a period of 24 hr than buds from untreated trees. In situ ethylene production from apical buds of treated trees was also reduced as growth resumed in the spring. Chemical name used: N-(phenylmethyl)-lH-purin-6-amine (AVG).

Open Access

Lenticel breakdown disorder (LB), most prevalent on ‘Gala’ (Malus × domestica) apples, especially in arid regions, has also been observed on other common cultivars. Depending on the preharvest environment, fruit maturity, and length of storage, LB usually appears as one or more round, darkened pits, centered on a lenticel, ranging in diameter from 1 to 8 mm. Symptoms are not visible at harvest nor are they usually apparent on unprocessed fruit after storage. However, following typical fruit processing and packing, symptoms are fully expressed after 12 to 48 h. Because the 3 to 4 weeks preceding ‘Gala’ harvest are usually the hottest and least humid, we theorized that desiccation stress was a main causative factor. Thus, several unique lipophilic formulations were developed that might reduce desiccation potential during this period of hot arid weather and rapid fruit enlargement. Emulsions of lipophilic formulations were applied to whole trees at various dosages and timings. In 2005, using a single handgun application 1 day before harvest, the best treatment reduced LB by about 20% in fruit stored 90 days at −1 °C. The following season, the best treatment from a single handgun application 7 days before harvest reduced LB by 35% after 90 days at −1 °C, whereas 3 weekly applications beginning 3 weeks before harvest reduced LB in similarly stored fruit by as much as 70%. In 2007, the best single treatment applied 1 week before harvest using a commercial airblast sprayer reduced LB by almost 50% after 90 days at −1 °C.

Full access

Preclimacteric `Bartlett' pears (Pyrus communis L.) were dipped for 3 min in either corn (Zea mays L.) or soybean [(Glycine max (L.) Merrill] oil emulsion immediately after harvest and stored at 0 °C. Untreated control fruit developed higher percentages of senescent scald, core breakdown, and decay after 15 weeks storage. Both treatments inhibited senescent scald, core breakdown, and decay in a similar and concentration dependent manner. Complete control of senescent scald and core breakdown was achieved by emulsions at 5% and 10%, and of decay by emulsion at 10%. Compared with controls, emulsion treatments delayed and reduced internal ethylene accumulation and volatile production in early storage and increased them in late storage. Compared with controls, fruit treated with oil contained similar levels of internal O2 and CO2 in early storage and higher CO2 and lower O2 in late storage. While control fruit lost commercial value after 15 weeks at 0 °C plus 5 days at 20 °C, oil-treated fruit exhibited normal color change, and had higher soluble solids, titratable acidity, and volatile production. Microscopic examination revealed that emulsion-treated fruit had a continuous surface film conforming to the contour of the fruit.

Free access

The stigmatic secretions of pomaceous flowers serve as a natural medium not only for pollen, but also for the pathogen Erwinia amylovora (Burr.) Winslow et al. and other microorganisms. To understand the microecology on the stigma, exudates from cultivars of pear (Pyrus communis L.), apple (Malus pumila P. Mill.), and crab apple [Malus mandshurica (Maxim.) Kom.] were analyzed for free sugars and free amino acids as available carbon and nitrogen sources. Extracts were obtained at different stages of anthesis by submerging and sonicating stigmas in water. Certain free sugars (glucose and fructose) and free amino acids (proline, asparagine, glutamic acid, and glutamine) were consistently predominant and increased during anthesis. Apple stigma extracts were also analyzed for polysaccharides and proteins. Of major components identified for apple, free sugars made up 4.5% by mass; polysaccharides (composed of arabinose and galactose), 49.6%; and proteins, 45.9%. The two largest components are likely present as glycoproteins. This may be the first report on characteristics of rosaceous stigma exudates that includes the identity of specific free sugars, free amino acids, and polysaccharide subcomponents. Discussion includes the comparison of pomaceous stigma exudates to those of other plants and the microecological implications.

Free access