Search Results

You are looking at 21 - 24 of 24 items for

  • Author or Editor: Donald J. Merhaut x
Clear All Modify Search
Full access

Salvatore S. Mangiafico, Julie Newman, Donald J. Merhaut, Jay Gan, Ben Faber and Laosheng Wu

Potential water quality impacts of agricultural production include runoff and leaching losses of nutrients, pesticides, and sediment. Stormwater runoff and soil water samples were collected from citrus (Citrus spp.), avocado (Persea americana), and ornamental nursery sites in Ventura County, CA, across 19 months. Nitrate–nitrite–nitrogen concentrations in runoff ranged from 0.07 to 31.1 mg·L−1, with medians for groves and nurseries of 4.2 and 5.7 mg·L−1, respectively. Constituents in runoff exceeding benchmarks for surface waters included turbidity, chlorpyrifos, and some organochlorine pesticides. When detected, chlorpyrifos concentration was linearly related to sample turbidity (P = 0.0025, r2 = 0.49). This suggests that the retention of waterborne sediments on-site may be an effective method for mitigating runoff of this pesticide. Bifenthrin, permethrin, and diazinon were also detected in runoff, but concentrations did not exceed water quality benchmarks. Nutrient concentrations in soil water were generally similar to nutrient concentrations in stormwater runoff, suggesting that potential groundwater contamination from leaching at citrus, avocado, and nursery sites may be as much of a concern as stormwater from these operations, particularly on sites with sandy or structured soil texture or flat topography. Nitrate–nitrite–nitrogen and orthophosphate concentrations in soil water were linearly related to nitrogen and phosphorus fertilizer application rates across sites, respectively (P < 0.0001, r2 = 0.49 and 0.50, respectively), suggesting that proper nutrient management is important in reducing potential groundwater contamination at these operations.

Free access

Donald J. Merhaut, Lea Corkidi, Maren Mochizuki, Toan Khuong, Julie Newman, Ben Faber, Oleg Daugovish and Sonya Webb

Agriculture is a major industry in California, with cool-season crops grown along the state’s coasts, warm-season crops grown in the hot deserts, and many temperate crops grown in the state’s valleys. In coastal communities such as Ventura County, the Calleguas Creek and the Santa Clara River watersheds have 50,000 and 60,000 irrigated acres of farm crops, respectively. These watersheds are considered impaired by nutrients, salts, pesticides, and other agricultural contaminants. Mitigation of chemical and sediment runoff through grower-implemented best management practices (BMPs) is therefore one of the highest priorities in the Los Angeles Regional Water Quality Control Board Basin Plan. A 3-year project was designed to assist Ventura County growers in meeting regional water quality objectives. The University of California Cooperative Extension Ventura County and the University of California, Riverside, collaborated with the Ventura County Resource Conservation District and the Ventura County Agricultural Irrigated Lands Group (VCAILG) to address three project goals: increase grower and landowner understanding of local agricultural water quality issues; identify gaps or deficiencies in current management practices in agricultural operations; and reduce the contribution of nutrients, pesticides, and other pollutants to impaired water bodies. To achieve these goals, 469 surveys of agricultural water quality management practices were collected to assess the extent of current adoption of BMPs. Over 160 growers who farm more than 14,000 acres that drain into Calleguas Creek and 7,000 acres that drain into the Santa Clara River watersheds were assisted. Using the survey, growers developed site-specific farm water quality plans and received on-farm recommendations for BMPs. Additionally, 12 water quality educational programs, “including demonstrations of successful BMPs,” were developed and more than 2500 copies of educational materials published by the University of California, the Resource Conservation District, and the Natural Resources Conservation Service of the U.S. Department of Agriculture were distributed at on-farm visits, workshops, and other grower events. The project resulted in improved understanding, by growers and landowners, of water quality issues and significantly increased the implementation of appropriate on-farm BMPs to protect water quality. Nearly 100 new BMPs primarily aimed at managing erosion, sediment movement, and irrigation runoff were identified and documented through annual reassessments for more than 8000 acres draining into Calleguas Creek. A total of 518 people attended the educational programs, and over 90% of participants who completed evaluations rated the programs highly. In the final year of the project, 75% of attendees indicated they plan to implement new BMPs within the next 5 years, especially in the areas of irrigation, erosion, and pest management.

Free access

Salvatore S. Mangiafico, Jay Gan, Laosheng Wu, Jianhang Lu, Julie P. Newman, Ben Faber, Donald J. Merhaut and Richard Evans

Production nurseries may be significant sources of nutrients and pesticides in runoff as a result of the intensity at which fertilizers, pesticides, and irrigation water are applied. Concentrations of nutrients and pesticides in runoff from production nurseries are not extensively documented. Runoff from 11 production nurseries in southern California using either recycling or detention basins was monitored for nutrients and pesticides. For six sites, runoff volume was determined and nutrient loads in runoff were calculated. Water use data, percentage of water recycled, and construction costs were determined for sites with recycling systems. Nutrient concentrations, mass loads, and pesticide detections in runoff from some sites would have been of concern without the implementation of detention or recycle basins. There were few differences in nutrient concentrations or pesticide detections between runoff from irrigation and that from precipitation events. This suggests the need for management practices and technologies that address runoff from both irrigation and precipitation events. Water use and cost data suggested that the implementation of recycling systems may be more beneficial and cost-efficient for larger facilities.

Restricted access

Ksenija Gasic, John E. Preece and David Karp