Search Results

You are looking at 21 - 30 of 32 items for

  • Author or Editor: Christopher Clark x
Clear All Modify Search

Experiments were conducted to determine if the seedling hypocotyl elongation and petal abscission assays could be used to identify differences in ethylene sensitivity among seedling geranium (Pelargonium ×hortorum) cultivars. When seedlings of six geranium cultivars were germinated and grown in the dark in the presence of the ethylene biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at various concentrations, they exhibited the triple response (measured as reduced hypocotyl length). While seedlings from all six cultivars were sensitive to ACC, `Scarlet Elite' seedlings were most sensitive, and `Multibloom Lavender', `Elite White' and `Ringo 2000 Salmon' seedlings were the least sensitive when germinated and grown on 20 mm [2022 mg·L-1 (ppm)] ACC. Florets representing three developmental stages of each of the six cultivars were exposed to 1 μL·L-1 of exogenous ethylene for 0, 30, or 60 min to determine if differences in cultivar sensitivity could be determined for petal abscission. Of the six cultivars tested, `Ringo 2000 Salmon', `Multibloom Lavender' and `Elite White' were the least ethylene sensitive. Florets were also self-pollinated to test for cultivar differences in ethylene synthesis and subsequent petal abscission. Ethylene production and petal abscission were both promoted in self-pollinated florets compared to nonpollinated florets. `Ringo 2000 Salmon', `Multibloom Lavender' and `Elite White' florets produced similar amounts of ethylene as all other cultivars, but abscised fewer petals after pollination. Our results indicate that the seedling hypocotyls elongation assay may be used to identify geranium cultivars with reduced sensitivity to ethylene. The data also suggest that genetic variability exists among geraniums for both ethylene sensitivity and biosynthesis.

Full access

Polyethylene (PE) mulch provides significant benefits to fruit and vegetable producers because it has the potential to improve crop quality and increase yield. However, the use of PE mulch generates plastic pollution, posing challenges to the sustainability of fruit and vegetable production. Plastic biodegradable mulches (BDMs) are a sustainable alternative to PE mulch because they are designed to decompose into water, carbon dioxide, and microbial biomass. We surveyed Tennessee fruit and vegetable growers to assess their use of PE mulch, BDM, or both; the differences in the characteristics of BDM users and nonusers; and their interest in using BDM. Our results indicate a large percentage of fruit and vegetable growers have used PE mulch compared with BDM. In general, BDM users tend to have more acres in fruit and vegetable production, have used dumping and burying as PE mulch disposal methods, and have spent more hours removing and disposing of PE mulch. Results indicate that even at prices higher than the current average market price for BDM, there is a percentage of Tennessee fruit and vegetable growers interested in using BDM.

Open Access

Abstract

‘Travis’ is an early maturity, high yielding sweet potato cultivar with resistance to soil rot, Streptomyces ipomoea [(Persons & W.J. Martin) Waks & Henrici] released by the Louisiana Agricultural Experiment Station in 1980. It produces high yield of well shaped rose skin colored roots with a deep orange flesh. ‘Travis’ also has resistance to Fusarium wilt, root-knot and internal cork virus. ‘Travis’ was grown from true seed in 1974 and tested as ‘L4-62’.

Open Access

Abstract

‘Eureka’, a soil rot-resistant, high-quality sweet potato (Ipomoea batatas L.) formerly tested under the designation of L4-131, was developed by the Louisiana State University Agricultural Experiment Station and is jointly released by Louisiana State University Agricultural Experiment Station and the University of California Agricultural Experiment Station.

Open Access

Two distinct syndromes have emerged in some production areas that have caused losses of sweetpotato (Ipomoea batatas) storage roots during postharvest storage: a complex of fungal rots (end rots) progressing from either end of storage roots and a necrotic reaction (internal necrosis) progressing internally from the proximal end of storage roots. This study was conducted in multiple environments to evaluate whether the use of preharvest ethephon application and storage with or without curing after harvest could be used to screen sweetpotato breeding lines for susceptibility/resistance to these two disorders. Treating vines with ethephon 2 weeks before harvest and placing harvested roots directly into storage at 60 °F without curing resulted in the greatest incidence of end rots in each state and there were significant differences in incidence among the sweetpotato genotypes evaluated. However, when ethephon was not used and roots were cured immediately after harvest, the incidence of end rots was low in all the genotypes evaluated except for one breeding line. Incidence and severity of internal necrosis were greatest when ethephon was applied preharvest and roots were cured immediately after harvest, but two cultivars, Hatteras and Covington, had significantly more internal necrosis than all others.

Full access

Tissue-cultured, virus-tested (TC) plantlets of sweetpotato (Ipomoea batatas var. batatas) cultivars Okinawan, LA 08-21p, and Murasaki-29 were obtained from Louisiana State University Agricultural Center. The objectives of field trials conducted at the Kula Agricultural Park, Maui, HI, were to compare yield and pest resistance of 1) ‘Okinawan’ obtained from a commercial (C) field with TC ‘Okinawan’ and 2) TC Okinawan with the aforementioned TC cultivars. Trials were planted Oct. 2015 and Aug. 2016 and harvested 5 months later. Storage roots were graded according to State of Hawai’i standards, and marketable yields included Grades AA, A, and B. In addition, injuries due to sweetpotato weevil (Cylas formicarius elegantulus) or rough sweetpotato weevil (Blosyrus asellus) were estimated. In both trials, fresh and dry weights of marketable storage roots of TC ‘Okinawan’ were nearly twice those from commercial planting material. In both trials, marketable fresh weights differed among the three TC cultivars; however, significant interactions were found, indicating that yields of cultivars differed between years. In the first field trial, ‘LA 08-21p’ had fresh marketable yields 1.6 to 1.7 times greater than TC ‘Okinawan’ and Murasaki-29, respectively. In the second trial, fresh marketable yields of TC ‘Okinawan’ and ‘LA 08-21p’were similar and 1.7 to 1.5 times greater than that of ‘Murasaki-29’, respectively. In both trials, ‘LA 08-21p’ had greater sweetpotato weevil injury than did the other two cultivars. Interestingly, in the second year, TC ‘Okinawan’ had greater rough sweetpotato weevil injury than did the other cultivars. Our results indicate that tissue-cultured planting materials increased marketable yields of TC ‘Okinawan’ compared with C ‘Okinawan’ sweetpotato and that the other TC cultivars did not produce greater yields than TC Okinawan.

Full access