Search Results

You are looking at 21 - 30 of 42 items for

  • Author or Editor: Charles F. Forney x
Clear All Modify Search
Free access

Charles F. Forney*, Jun Song and Michael A. Jordan

Apple fruit are treatmented with diphenylamine (DPA) in the form of a postharvest dip to prevent the development of storage scald. However, DPA residues have been detected on apples not treated with DPA, which is problematic in markets where DPA residues are not acceptable. The objective of this study was to identify sources of DPA contamination and evaluate the effectiveness of ozone to reduce contamination. Concentrations of DPA in the atmosphere of commercial storage rooms was monitored during the storage season and the adsorption of DPA onto wood and plastic bin material, plastic bin liners, foam insulation, and apple fruit was assessed. DPA was sampled from headspace with solid phase micro extraction using 65 μm polyacrylate micro fibers and analyzed using GC-MS. The effectiveness of gaseous treatments of 300 and 800 ppb ozone to reduce DPA contamination on apple fruit and bin material was also determined. DPA was found to volatilize from treated apples and bins into the storage room air, where it was adsorbed onto storage room walls, bins, bin liners and other fruit. DPA was found in the atmosphere of storage rooms containing apples that were not treated with DPA. Wood and plastic bin material, bin liners, and foam insulation all had a high affinity for DPA and were determined to be potential sources of contamination. Ozone reacted with DPA and following gaseous ozone treatments, off-gassing of DPA from wood and plastic bin material and bin liners was reduced. However, ozone was not effective in removing all DPA in contaminated materials and was ineffective in removing DPA from contaminated apples. Due to the pervasive and persistent nature of DPA, fruit should be handled and stored in facilities where DPA is not used to prevent contamination of fruit.

Full access

Charles F. Forney, Leonard J. Eaton and Leigh Gao

Increasing the size of containers used to transport wild lowbush blueberry (Vaccinium angustifolium) fruit from the field to the processing facility has the potential to increase handling efficiency. Currently the wild blueberry industry uses a standard 18-inch-long × 15-inch-wide × 5-inch-deep plastic container that holds about 20 lb of fruit. This study examined the development of a new, pallet-sized high-capacity blueberry container and determined its effects on fruit quality following harvesting, transport, and processing. Laboratory studies on the effects of packing depth of berries on fruit quality demonstrated that container depths of 14.2 inches were damaging to fruit 24 hours following harvest, transport, and holding under ambient conditions, while depths of 7.1 inches were not. In commercial trials with larger pallet-sized prototype containers, fruit depths of up to 10 inches were not damaging to fruit under otherwise typical commercial handling conditions. Dumping fruit from the 10-inch-deep pallet-sized containers onto conveyer belts at the processing facility caused minimal damage to the fruit. In addition, fruit crushing that occurred in the large pallet-sized containers was similar to that occurring in the standard 20-lb plastic containers currently used by the industry. Results of these studies indicate that large pallet-size blueberry containers with a depth of 10 inches could be used without causing significant damage to fresh fruit during harvest, transport, and processing. Thus as a whole, the adoption of this type of container would improve handling efficiency and potentially the quality of the fruit.

Full access

Jun Song, Lihua Fan, Paul D. Hildebrand and Charles F. Forney

The biological effect of corona discharge on onions (Allium cepa L.) in a commercial storage was investigated. Surface discoloration and mold were modestly but significantly reduced by the corona discharge when onions were stored for 2 or 4 weeks with or without an additional 2 weeks of shelf life under high humidity. Corona discharge treatment also reduced airborne mold spores in the storage room. No significant changes in internal decay, firmness, sprouting, or rooting, in treated onions were found.

Free access

Jun Song, Lihua Fan, Charles F. Forney and Michael A. Jordan

Ethanol production and chlorophyll fluorescence were measured as signals of freezing and heat stress in apple fruit. `Cortland' and `Jonagold' apples were held at –8.5 °C for 0, 6, 12 or 24 h (freezing treatments), or at 46 °C for 0, 4, 8 or 12 h (heat treatments). Following treatments, fruit were stored at 0 °C and evaluated after 0, 1, 2, or 3 months. Following storage, fruit samples were kept for 12 h at 20 °C and then analyzed for ethanol production, chlorophyll fluorescence, and visible injury. Severity of flesh browning increased with increasing treatment time for both freezing and heat treatments. Freezing for 24 h and heating for 12 h caused severe flesh browning in both cultivars. Severity of heat-induced browning increased during storage. Increases in ethanol production were apparent 12 h following treatments and reflected the degree of stress-induced fruit injury. After 2 months of storage, ethanol concentrations peaked and were as much as 400-fold greater than that of controls. These stress treatments also reduced ethylene production and chlorophyll fluorescence. The degree of increase in stress-induced ethanol production and decrease in chlorophyll fluorescence correlated with stress-induced injury and could be used to predict the severity of injury that develops during storage. Other volatile production and their relationship to fruit stress will also be discussed.

Free access

D. Mark Hodges, Wendy V. Wismer and Charles F. Forney

The responses of certain antioxidants in detached leaves of two cultivars of spinach (Spinacia oleracea L.) differing in their senescence rates were assessed during storage in order to explore the significance of these antioxidants in senescence regulation and dynamics. To identify spinach cultivars differing in their senescence rates, 10 cultivars were grown in field plots, harvested at maturity, and their leaves detached and stored at 10 °C in the dark. At the point of harvest (d 0) and on d 5, 8, 12, and 15, samples were analyzed for lipid peroxidation (MDA), chlorophyll loss, and electrolyte leakage. The cultivars were also grown in laboratory growth chambers to corroborate field results. Two cultivars that were consistently identified as having relatively high (Spokane F1) and low (BJ 412 Sponsor) senescence rates were grown in growth chambers for 45 d, harvested at maturity, and their leaves detached and stored as above. At the point of harvest (d 0) and on d 4, 8, 12, 16, and 20, samples were analyzed for (i) activities of ascorbate peroxidase (ASPX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6), and superoxide dismutase (SOD; EC 1.15.1.1), and (ii) concentrations of MDA, total ascorbate, reduced ascorbate (AsA), oxidized ascorbate (DAsA), total glutathione, reduced glutathione (GSH) and oxidized glutathione (GSSG). Although MDA accumulated in leaves of both cultivars concomitant with time after detachment, levels became significantly higher in Spokane. Activities of ASPX declined in Spokane leaves following detachment but activities of SOD and levels of glutathione increased in this cultivar. GSH/GSSG increased in `Sponsor', but dramatically more so in `Spokane'. Ascorbate concentrations did not diminish in leaves of `Spokane' to the degree that they did in `Sponsor' tissue. DAsA/AsA values did not decrease in `Spokane' leaves following detachment, though they did in those of `Sponsor'. It is argued that declining activities of ASPX and levels of ascorbate and increasing activities of SOD manifested in accumulation of hydrogen peroxide in Spokane, leading to a greater potential for lipid peroxidation in this variety than for Sponsor. SOD activities and glutathione levels may have increased as a result of elevated oxidative stress in Spokane. Increased hydrogen peroxide accumulation in `Spokane' relative to `Sponsor' may have contributed to an increased rate of senescence in the leaves of this cultivar.

Free access

Orville Osmicote, Charles F. Forney, Jeffrey Richards and Chiam Liew

Free access

Charles F. Forney, Stephanie Bishop, Michele Elliot and Vivian Agar

Extending the storage life of fresh cranberries (Vaccinium macrocarpon Ait.) requires an optimum storage environment to minimize decay and physiological breakdown (PB). To assess the effects of relative humidity (RH) and temperature on storage life, cranberry fruit from four bogs were stored over calcium nitrate, sodium chloride, or potassium nitrate salts, which maintained RH at 75%, 88%, and 98%, respectively. Containers at each RH were held at 0, 3, 5, 7, or 10 °C and fruit quality was evaluated monthly for 6 months. Both decay and PB increased with increasing RH in storage. After 6 months, 32%, 38%, and 54% of fruit were decayed and 28%, 31%, and 36% developed PB when stored in 75%, 88%, and 98% RH, respectively. The effects of RH continued to be apparent after fruit were removed from storage, graded, and held for 7 days at 20 °C. The decay of graded fruit after 4 months of storage in 75%, 88%, or 98% RH was 10%, 13%, and 31%, respectively, while PB was 12%, 12%, and 17%, respectively. Fresh weight loss decreased as RH increased averaging 1.9%, 1.4%, and 0.7% per month for storage in 75%, 88%, and 98% RH, respectively. Fruit firmness was not affected by RH. Storage temperature had little effect on decay. However, PB was greatest in fruit stored at 10 °C, encompassing 55% of fruit after 5 months of storage. When graded fruit were held an additional 7 days at 20 °C, decay and PB were greater in fruit previously stored at 0 or 3 °C than at 5, 7, or 10 °C. Fresh weight loss increased as storage temperature increased, averaging 0.8%, 1.0%, 1.3%, 1.7%, and 1.9% per month at 0, 3, 5, 7, and 10 °C, respectively. Fruit firmness decreased during storage, but was not affected by storage temperature. To maximize storage and shelf life, cranberry fruit should be stored in a RH of about 75% at 5 °C.

Free access

Charles F. Forney, Willy Kalt and Michael A. Jordan

Free access

D. Mark Hodges, Charles F. Forney and Wendy Wismer

The degree of damage that may occur through harvesting and packing represents one of the major factors that can affect quality of fresh-cut produce. The purpose of this study was to examine the effects of different steps in a representative fresh-cut processing line on storage quality of spinach (Spinacia oleracea L.). To this end, spinach leaves were removed at successive points on the line: 1) before entry into the line (control); 2) after a shaking procedure but before initial rinsing with 10 °C water + 5 mg·L-1 chlorine dioxide; 3) after centrifugal drying; and 4) after commercial packaging. After removal from the different points in the line, the spinach samples were stored at 10 °C for 16 days, during which time malondialdehyde (MDA) concentration (lipid peroxidation assay), electrolyte leakage (membrane leakiness), chlorophyll content (a, b, and total), and color attributes (L, saturation, hue angle) were measured. Both lipid peroxidation and electrolyte leakage increased with time of storage and with stage of procesing. Electrolyte leakage increased most in material removed after the shaking procedure, but prior to hydrocooling. Overall total chlorophyll loss during storage did not change with time of removal from the processing line, although overall chlorophyll b content decreased in stored material 8 days following centrifugal drying and packaging. A more rapid loss in chlorophyll a relative to chlorophyll b over the first 8 days of storage was reflected in hue angle measurements regardless of the point of removal. The processing line under study, thus had both beneficial and detrimental effects on storage quality of spinach. Detrimental effects associated with centrifugal drying and packaging procedures could be modified to improve quality.

Free access

ZhaoSen Xie, Charles F. Forney, WenPing Xu and ShiPing Wang

In this study, the ultrastructure of phloem and its surrounding parenchyma cells in the developing grape berry produced under root restriction or without (control) was for the first time systematically investigated through transmission electron microscopy during the entire developmental process of the berry. The results showed that root restriction increased the number of plasmodesmata between sieve elements (SE) and companion cells (CC) and between the SE/CC complex and phloem parenchyma cells. Sieve elements in fruit produced under root restriction were smaller in size than those from the control treatment, but CC were bigger than in the control treatment. During the first rapid growth phase of the grape berry, there was denser cytoplasm in the CC produced under root restriction having more abundant mitochondria, endoplasmic reticulum, multivesicular bodies, vesicles, and plastids than in control fruit. During the second rapid growth phase of the grape berry, CC under root restriction showed more serious plasmolysis. Cytoplasmic contents such as vesicles were fused into the vacuole of which the tonoplast nearly disappeared in the phloem parenchyma cells, and cytoplasmic contents in fruit cells produced under root restriction became denser than the control treatment. These results demonstrated that grape berry adapted to the root restriction stress through ultrastructure variation of the phloem, and this variation explained the increase of photosynthate accumulation in the grape berry observed under root restriction.