Search Results

You are looking at 21 - 24 of 24 items for

  • Author or Editor: Charles A. Sims x
Clear All Modify Search

This study investigated the effect of ethylene treatment at high temperatures of 30 to 40 °C for up to 72 hours on subsequent ripening-associated processes in mature green ‘Sunny’ and ‘Agriset 761’ tomatoes (Solanum lycopersicum). Compared with ethylene-treated fruit at 20 °C, ethylene exposure at 30 or 35 °C stimulated ripening in terms of ethylene biosynthesis and color development, but the ethylene effect was only apparent after transfer to air at 20 °C. There were no negative effects on ripe tomato quality related to ethylene exposure at 30 or 35 °C. However, ethylene production of tomatoes was permanently impaired by ethylene exposure at 40 °C for 48 or 72 hours even after transferring fruit to air at 20 °C; these fruit exhibited slow softening and color development. Our results suggest that tomatoes perceive ethylene at 30 to 35 °C despite impairment of ripening at those temperatures, with the accelerated ripening response becoming apparent only after transferring the tomatoes to air at lower temperature.

Open Access

The efficacy of several proprietary plastic pallet cover systems to maintain strawberry (Fragaria ×ananassa) fruit quality during commercial shipment was determined. ‘Albion’ fruit were harvested from farms near Watsonville, CA. Fruit in vented plastic clamshells were palletized and forced-air cooled to 33–35 °F. Different cover systems (CO2 West, PEAKfresh, PrimePro, Tectrol) were placed over the pallets. Pads that released carbon dioxide (CO2) gas were placed inside the CO2 West cover. The Tectrol cover was sealed to the pallet base, a partial vacuum was applied, and pressurized CO2 gas was injected inside. The systems other than Tectrol remained open at the base. Six separate shipments of palletized fruit were transported in refrigerated (32–39 °F) truck trailers to distribution centers in either Florida or Georgia in 2.3–4.7 days. CO2 concentrations within pallets at the beginning and end of transport were highest (11% to 16%) in the sealed Tectrol system and relatively low (0.06% to 0.30%) in the open CO2 West, PEAKfresh, and PrimePro cover systems. Relative to noncovered control fruit, which lost 0.8% fresh weight during shipment, the pallet covers reduced the transport-related weight loss by 38% to 52%. The incidence of fruit decay was low (1.0% to 1.4%) after transport but increased substantially following a 2-day shelf life at 68 °F. However, fruit from the Tectrol pallets exhibited significantly less decay (36%) after shelf life than the CO2 West (39%), noncovered control (41%), PrimePro (42%), and PEAKfresh (43%) pallets. Fruit sensory quality was unaffected by the different pallet cover systems. Our findings show that transporting strawberries in the sealed Tectrol pallet cover system, in which CO2 concentrations were elevated to 11% to 16%, was most effective in complementing current low temperature management practices to maintain fruit quality.

Full access