Search Results

You are looking at 21 - 30 of 53 items for

  • Author or Editor: Carol Miles x
Clear All Modify Search

Low temperatures can slow down emergence, decrease weed competitiveness, and lead to uneven crop maturity in direct-seeded crops such as baby leaf lettuce (Lactuca sativa L.). In this study, seeds of 103 single-parent lineage, homozygous lettuce accessions (53 cos and 50 leaf type) from the USDA National Plant Germplasm System (NPGS) and six commercial standard lettuce cultivars (three cos and three leaf type) were evaluated in replications for percent germination after 7 and 10 days at 5 °C in a germination chamber. Cos and leaf types were selected for this study as they are most commonly used for baby leaf lettuce production. Differences were observed among entries in percent seeds germinated after both 7 and 10 days. Overall, an average of 68% of seeds germinated after 7 days and 94% germinated after 10 days. Although several NPGS accessions had higher percent germination than the commercial cultivars, the average percent germination was not statistically different between the two seed sources at 7 or 10 days. Percent germination also did not differ between entries of cos and leaf type after 7 or 10 days. Similarly, no difference in percent germination between entries of dark and white seed color was observed after 7 or 10 days. No relationship between 100 seed weight and percent germination was observed after 7 days (r 2 = 0.07) or 10 days (r 2 = 0.13). Thus, lettuce seed type, color, and 100 seed weight do not appear to be good predictors of germination under cold conditions in lettuce. The accessions with the highest percent germination after 7 days at 5 °C have the potential to be used for the development of new lettuce cultivars suitable for an extended, early season production in temperate climates when soil temperature is lower than optimal for lettuce germination. Further studies are needed to assess the ability of these accessions to germinate rapidly under cold field soil conditions.

Free access

A soil-biodegradable mulch (BDM) is designed to be tilled into the soil at the end of the growing season, and is a successful alternative to polyethylene (PE) mulch if it suppresses weeds and improves soil temperature and moisture, crop yield, and fruit quality. This study compared one clear plastic BDM (COX), two black plastic BDMs (BOX and BFO), and two paper BDMs (WGP and AMX) to clear and black plastic PE mulch (CPE and BPE, respectively) for weed control, yield, and mulch adhesion of ‘Cinnamon Girl’ pie pumpkin (Cucurbita pepo) in a Mediterranean climate where increased soil temperature from mulch is desirable. BDMs in this study are advertised as soil-biodegradable, and we tested functionality but not biodegradability. Mulch deterioration during the growing season was measured as percent soil exposure (PSE), and remained low at the end of the growing season for all BDM and PE treatments both years (5% on average) except COX (68%). Weed number and biomass were low early, mid, and late season for all treatments except COX in 2018 and COX and CPE in 2019. Soil temperature with PE mulches (20.7 °C on average) was similar or slightly higher than with plastic BDMs (19.8 °C on average), which was higher than with paper BDMs (18.9 °C on average). Total fruit number and yield were similar for PE mulches (19.3 and 24.5 kg, respectively) and black plastic BDMs (17.3 and 21.2 kg, respectively), which were higher than COX and paper BDMs (15.7 and 19.8 kg, respectively). Mulch adhesion occurred on fruit in all BDM treatments, with more mulch adhesion in BFO in 2018 and WGP in 2019 than in other BDM treatments each year. The number of wipes is a proxy for the impact on harvest labor and can influence overall on-farm profitability. The number of wipes to remove adhered mulch (1.2 wipes on average) was similar for fruit harvested at four times of day (0800, 1000, 1200, and 1400 hr), but more wipes were needed to remove adhered mulch when fruit were stored up to 4 hours postharvest (5.4 wipes). Number of wipes to remove adhered mulch was negatively correlated to the amount of moisture on the fruit surface (R 2 = 0.31). Overall, these findings demonstrate that all black plastic and paper BDMs remained intact throughout the growing season and controlled weeds as well as black PE mulch, while clear BDM had higher weed pressure because it degraded during the growing season. Pumpkin yield was similar for black plastic BDMs and PE mulches and lower for clear and paper BDMs. However, all BDMs in this study adhered to the fruit surface and their removal became more difficult as the fruit surface dried.

Open Access

Biodegradable plastic mulch has the potential to be a sustainable technology in agricultural production systems if the mulch performs equally to polyethylene (PE) mulch and biodegrades completely into constituents that do not harm the soil ecology or environment. Reduced labor costs for removal and disposal, and reduced landfill waste add further appeal to the sustainability of biodegradable plastic mulch. Biodegradable paper mulch has been allowed in certified organic production systems in the United States for many years, while the National Organic Program (NOP) added biodegradable biobased plastic mulch to the list of allowed synthetic substances for organic crop production in Oct. 2014. Although biodegradable plastic mulch may meet the NOP biodegradability requirements (90% biodegradation within 2 years), currently no products have been approved for use in certified organic production because, so far, none meet the requirement of being completely biobased. Additionally, while the synthetic manufacturing processes that are used to make biodegradable plastic mulch are allowed by the NOP, the use of genetically modified organisms (GMOs) in the feedstocks, including their fermentation, is not allowed. Organic growers are advised always to check with their certifier before applying a product as some biodegradable mulch manufacturers and marketers erroneously advertise their product as “organic.” Looking forward, if biodegradable plastic mulch meets the NOP requirement of 90% biodegradation after 2 years, there is a possibility that 10% of plastic mulch residuals will persist (if the mulch contains nonbiodegradable ingredients); in this case, after 8 years of annual biodegradable mulch application, plastic residuals in the soil would exceed twice the amount of mulch applied per year. The current methods used by the NOP to test mulch biodegradation are laboratory based and it is uncertain if the results accurately represent field conditions. Reliable field sampling methods to measure residual mulch fragments in the soil need to be developed; however, it is unlikely such field tests will measure CO2 evolution, and thus will not be a true measure of biodegradation. Additional testing is needed under diverse field conditions to accurately quantify the rate and extent of biodegradation of mulch products that are marketed as biodegradable.

Free access

Baby-leaf salad green crops such as lettuce (Lactuca sativa), kale (Brassica oleracea), arugula (Eruca sativa), and mustard greens (Brassica juncea) thrive in the cool, humid climate of the maritime Pacific Northwest, particularly in the extended spring and fall seasons. To identify cultivars best suited for extended-season production in northwest Washington, nine leafy green cultivars were grown at two locations in the spring and fall seasons for 2 years. A high level of variability in crop performance was observed between seasons, locations, years, planting dates, and cultivars, indicating low-yield stability in baby-leaf salad crops across diverse environments and conditions. Overall, cultivars had a higher marketable weight in the spring than in the fall. Marketable weight was higher in Spring 2013 than in Spring 2014, and was higher in Fall 2013 than in Fall 2012. Days to harvest (DTH) were shorter in the spring than in the fall both years, and in both seasons DTH varied by ≈1 week between the two trial locations. Fresh weed biomass was almost 5.5 times higher in spring than in fall both years. Overall, pak choi ‘Joi Choi’ and mustard ‘Komatsuna’ had the highest marketable weight, lowest DTH, and lowest weed biomass across the widest range of environments and conditions, while beet ‘Bull’s Blood’ had the lowest marketable weight, relatively long DTH and highest weed biomass. These results suggest that baby-leaf salad crop cultivar selection differs for spring and fall seasons, and production can be highly variable between years and locations. Further, results suggest that growers should plant a diversity of crop cultivars each season to protect from crop loss and to achieve overall yield stability.

Free access

In this study, four cider apple (Malus ×domestica) cultivars, Brown Snout, Dabinett, Kingston Black, and Yarlington Mill, were collected from four orchards, two in northwest Washington and two in central Washington, to compare juice quality characteristics. Northwest Washington has a cool, humid summer climate (16.0 °C on average during this study) and is the origin of the state’s cider apple industry, while central Washington has a hot, dry summer climate (22.1 °C on average during this study) and is the center of the state’s dessert apple industry. Each year from 2012 to 2015, fruit of the four cultivars were harvested and stored at each orchard until they were collected. Fruit were pressed and the juice analyzed for five quality characteristics important to cider making: soluble solids concentration [SSC (%)], specific gravity (SG), pH, titratable acidity [TA, malic acid equivalent (g·L−1)], and tannin [tannic acid equivalent (%)]. Harvest dates and climate data were recorded annually for each orchard location. There were no significant differences in any of the juice quality characteristics due to region and no significant interaction of region, cultivar, and/or year. Results did show, as expected, a significant difference in all five juice characteristics due to cultivar. ‘Brown Snout’, ‘Dabinett’, and ‘Kingston Black’ were higher in SSC and SG than ‘Yarlington Mill’; ‘Dabinett’ had the highest pH and lowest TA while ‘Kingston Black’ had the lowest pH and highest TA; and tannin was highest in ‘Yarlington Mill’ and lowest in ‘Kingston Black’. There was also a difference in SG and tannin due to year; SG was lowest in 2013 while tannin was highest in 2012. The difference in SG from year to year may be a result of variable year-to-year storage time at each orchard before collection of fruit. The difference in tannin from year to year was likely due to climatic variation over the four years of this study. On average, growing degree days (GDD) increased 10% and chilling hours (CH) decreased 10% from 2012 to 2015 in both regions. Classification of the four cultivars included in this study differed from historical records at the Long Ashton Research Station (LARS) in England; in the current study, the four cultivars exhibited tannin levels below 0.20% and would not be classified as bitter, unlike their historical classification at LARS. Results from this study indicate that variations in juice quality characteristics occur between cultivars as expected and occur within a cultivar from year-to-year, but for the four cultivars included in this study variations did not occur due to production region in Washington.

Free access

Covering the soil surface with opaque plastic sheets to kill vegetation is referred to as tarping and is used by small-scale and organic growers to control weeds before planting crops. There are few published studies on tarping, and here we present a review of the literature in combination with observations from two on-farm case studies, one carried out in northern California and the other in northwestern Washington. An advantage of tarping is that it enables growers to control weeds without herbicides or tillage equipment, which can be cost-prohibitive for small-scale growers. Tarping is also suitable for no- or reduced-tillage systems, which is a primary goal for many small-scale and organic growers. Silage tarps that are 5 to 6 mils thick and black on one side and white on the other are most commonly used for tarping, are readily available new or used from some local agricultural suppliers or online, and can be reused for six or more seasons. Tarps are placed with the black side up to warm the soil, which encourages weed seed germination. When the soil is tilled and then tarped, a 3-week period with sufficient soil temperature and moisture is sufficient to kill emergent weeds in the top ≈1 inch of soil and provides a 95% to 100% weed-free surface at tarp removal. When a tarp is applied from autumn until spring to a plot that has established weeds, winter annual weeds can be controlled for several weeks after tarp removal, and then soil disturbance results in germination of additional weed seeds. For established perennial weeds, it may be necessary to extend the tarp application time to several months during critical weed growth phases or a full year to break the vegetative life cycle. Tarping does not reduce the weed seed bank, thus minimal soil disturbance after tarp removal is needed to maintain a reduced weed population during the cropping period.

Open Access

Growers need reliable information on costs and returns they can expect for a cider apple (Malus ×domestica) orchard suitable for mechanization because specialty cider apples can only be used for making cider, and returns are expected to be lower than for fresh table apples. This study estimates the costs, returns, and net profit that growers may realize by planting cider apples in either a freestanding or tall spindle system that use a mechanical harvester (both systems) and mechanical hedger (tall spindle system only). Results show that both production systems have positive net returns during full production, and their respective break-even returns are lower than the current market price, demonstrating that both systems are potentially profitable investments. Results also show that the tall spindle system is potentially more profitable due to the advantages of earlier start of fruiting and higher crop yield. The estimated net returns of the tall spindle system during full production are nearly 4 times higher than that of a freestanding system. At a discount rate of 10%, the net present value (NPV) of the tall spindle system is positive and payback period is 13 years, whereas the NPV of the freestanding system is negative. The discount rate represents the time value of money and reflects the perception of risk for the investment. The break-even discount rates (i.e., NPV = 0) are ≈6.88% for the freestanding system and 10.78% for the tall spindle system. Sensitivity scenarios found that when all else was constant, profitability increased as market price, crop yield, and production area increase and also when the cost of the harvester decreased. Because mechanical harvesters are expensive, profitability tends to be more favorable for larger farms due to economies of scale. Also, a high picking efficiency is important because fruit that falls on the ground is considered crop yield loss and reduces the gross income from cider apples.

Open Access

Grafting is used in watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai] production as a means to combat soilborne diseases. To support the development of new rootstock cultivars in the United States, we screened cucurbit germplasm accessions for resistance to verticillium wilt (caused by Verticillium dahliae Kleb.) and for compatibility as watermelon rootstocks. Screening was done using a field naturally infested with V. dahliae [5 and 7.5 colony-forming units (cfu)·g−1 soil in 2017 and 2018, respectively], and plants were inoculated at transplanting (1.5 and 104 cfu of V. dahliae per plant in 2017 and 2018, respectively). In 2017, 56 germplasm accessions from three genera commonly used as rootstocks, Cucurbita, Lagenaria, and Benincasa, were sourced from the U.S. Department of Agriculture (USDA) National Plant Germplasm System and area under the verticillium wilt (disease) progress curve (AUDPC) values ranged from 16 to 397. The 14 accessions with the lowest AUDPC values and good germination (>40%) were used as rootstocks along with the commercial rootstock cv. Tetsukabuto (control), and all were grafted with watermelon cv. Secretariat as the scion in 2018. Grafted plant survival rate was greatest for ‘Tetsukabuto’ (90%) and the accession PI 381840 (L. siceraria) (89%), and ranged from 22% to 85% for all other accessions. All grafted treatments that produced mature fruit in 2018 tended to flower at the same time as nongrafted ‘Secretariat’, with first male and female flowers occurring in 45 to 50 days and 44 to 51 days after transplanting, respectively. There were no significant differences in AUDPC values due to grafting or when accessions were compared with ‘Tetsukabuto’. Only six accessions produced mature fruit when grafted with ‘Secretariat’, indicating they were compatible for watermelon grafting. Fruit weight and number as well as total soluble solids, pH, lycopene content, rind firmness and thickness, and dry matter content were similar for all accessions and ‘Tetsukabuto’ grafted on ‘Secretariat’. Only fruit flesh firmness differed and was highest for ‘Secretariat’ grafted on ‘PI 491316’ and lowest for ‘Secretariat’ grafted on ‘PI 49174’. The six verticillium wilt-tolerant accessions that were compatible with watermelon could potentially be used as rootstocks or as sources of genetic resistance in rootstock breeding programs.

Open Access

In this 2-year study, ‘Brown Snout’ specialty cider apples (Malus ×domestica) that had been hand harvested or machine harvested with an over-the-row shake-and-catch small fruit harvester were ambient stored (56 °F mean temperature) for 0, 2, and 4 weeks to evaluate yield, fruit damage, yield loss, and juice quality characteristics. The average yield (pounds per acre) of fruit picked and retained by the mechanical harvester was 74% that of the hand-harvest yield and 81% that of the hand-harvest yield when fruit that fell out of the harvester was included in the machine-harvest yield. Percent fruit bruised and cut were greater for machine harvest (97.5% and 25.5%, respectively) than for hand harvest (47% and 0.5%, respectively), on average for 2014 and 2015. Yield loss to rot was greater for machine harvest than for hand harvest, and increased for both methods over time; percent rot doubled from 2 to 4 weeks storage for machine harvest (22% to 41%), and while negligible, tripled from 2 to 4 weeks storage for hand harvest (0.7% to 2.1%). Juice quality characteristics did not differ due to harvest method, but did differ due to year and storage time. Soluble solids concentration [SSC (%)] and specific gravity (SG) did not change due to storage in 2014, but in 2015, SSC and SG were greater on average for 2 and 4 weeks storage duration (15% and 1.062, respectively) than at harvest (13.31% and 1.056, respectively). Titratable acidity (grams per liter malic acid) decreased in 2014 from 2.98 g·L−1 at harvest to 2.70 g·L−1 on average for 2 and 4 weeks storage duration, but did not differ due to storage in 2015. Tannin [tannic acid equivalent (%)] was unchanged in 2014 from harvest to 4 weeks storage, but increased in 2015 from 0.16% at harvest to 0.19% by 4 weeks storage. These results indicate that harvest efficiency could be improved with some engineering modifications of the over-the-row mechanical harvester and training modifications for the trees. A comparison of the aromatic and phenolic contents of mechanically harvested and hand-harvested ‘Brown Snout’ would be a valuable next step in evaluating shake-and-catch mechanical harvest technology for cider apple production.

Full access

Little information exists on the bloom and fruit characteristics of cider apple (Malus ×domestica) cultivars grown in the United States for the juice and alcoholic beverage markets. In this study, a total of 17 cider apple cultivars, including 4 American, 9 English, and 4 French, plus 1 Danish standard dessert apple cultivar (Red Gravenstein, Worthen strain) commonly used for cider, all grown in northwest Washington, were evaluated from 2000 to 2015 for commercially relevant traits. Trees were rated each year and the cultivars were categorized accordingly by relative bloom time, bloom habit, and productivity. The mean full bloom (FB) date of the 18 apple cultivars evaluated ranged from 25 Apr. to 25 May, with 6 cultivars categorized as early season bloomers, 9 as midseason, and 3 as late season. The mean bloom density (BD) rating (measured on a scale of 1–5) for all cultivars was (mean ± sd) 3.8 ± 0.6 (moderate bloom), with the bloom habit of 1 cultivar categorized as biennial, 11 as consistent, and 6 as strongly consistent. The mean productivity rating (measured on a scale of 1–5) for all cultivars was 2.9 ± 0.6 (light fruiting), with the productivity of 4 cultivars categorized as biennial, 10 as consistent, and 4 as strongly consistent. The mean fruit diameter of the 18 apple cultivars was 2.7 ± 0.4 inches (medium sized), with the fruit size of 2 cultivars categorized as small-fruited, 15 as medium-fruited, and 1 as large-fruited. For the 18 cultivars, the mean tannin and titratable acidity (TA) were 0.20% ± 0.14% and 0.54% ± 0.28%, respectively, and using the English cider apple classification system of juice type, 4 of the cultivars were classified as bittersweet, 1 as bittersharp, 3 as sweet, and 10 as sharp. Three of the cultivars had tannin content lower than what was historically recorded at the Long Ashton Research Station (LARS) in Bristol, England, for those same cultivars. The mean specific gravity (SG) of the 18 cultivars was 1.052 ± 0.007, the average predicted alcohol by volume (ABV) was 6.9% ± 0.9%, and the mean pH was 3.68 ± 0.39. Classification of three cultivars in northwest Washington, based on juice characteristics, differed from their historical classification in England, likely because of differences in climate and management. Only cultivars Golden Russet (sharp), Grimes Golden (sharp), and Yarlington Mill (sweet, but borderline bittersweet) were strongly consistent in productivity, but none produced high levels of tannin, whereas only cultivars Bramtot (bittersweet), Chisel Jersey (bittersweet), and Breakwell Seedling (bittersharp) were consistent in productivity and produced high levels of tannin.

Full access