Search Results
You are looking at 21 - 29 of 29 items for :
- Author or Editor: Bielinski M. Santos x
- HortTechnology x
Field trials were conducted to determine the effect of yellow nutsedge (Cyperus esculentus) and purple nutsedge (C. rotundus) time of establishment on their distance of influence on bell pepper (Capsicum annuum). A single seedling of each weed species was transplanted 1, 2, 3, 4, and 5 weeks after transplanting (WAT) bell pepper. Each weed was separately established in the center of plots within double rows of bell peppers. Crop height and yield were determined from bell pepper plants located at 6, 13.4, 24.7, and 36.5 inches away from each weed. Bell pepper height was unaffected by weed species, time of establishment, or the interaction between these factors. Marketable yield data indicate that yellow nutsedge was more aggressive than purple nutsedge interfering with bell pepper. When yellow nutsedge was established at 1 WAT, bell pepper yield reduction was between 57% and 32% for plants at 6 and 13.4 inches away from the weed respectively, which represents a density of ≈0.14 plant/ft2. One purple nutsedge plant growing since 1 WAT at 6 inches along the row from two bell pepper plants (0.43 plant/ft2) produced a yield reduction of 31%. These results indicate that low nutsedge densities, which are commonly believed to be unimportant, can cause significant bell pepper yield reductions.
Field trials were conducted to: 1) determine the effect of mulch types and applied concentrations of 1,3-dichloropropene + chloropicrin (1,3-D + Pic) on fumigant retention; and 2) examine the influence of mulch films and 1,3-D + Pic concentrations on purple nutsedge (Cyperus rotundus) control. 1,3-D + Pic concentrations were 0, 600, 1000, and 1400 ppm, and mulch types were white on black high-density polyethylene mulch (HDPE), white on black virtually impermeable film (VIF-WB), silver on white metalized mulch, and green VIF (VIF-G). Regardless of the initial 1,3-D + Pic concentrations and mulch types, fumigant retention exponentially decreased over time. When 1400 ppm of 1,3-D + Pic were injected into the soil, 1,3-D + Pic dissipation reached 200 ppm at 3.2, 2.9, 2.2, and 1.5 days after treatment (DAT) under VIF-G, VIF-WB, metalized, and HDPE mulches, respectively. At 5 weeks after treatment (WAT), HDPE mulch had the highest purple nutsedge densities among all films. The treatments covered with VIF-G had purple nutsedge densities <5 plants/ft2, regardless of the applied fumigant concentration, while VIF-WB and metalized mulch reached this weed density with 696 ppm of the fumigant. In contrast, 1186 ppm of 1,3-D + Pic were needed to reach this weed density with HDPE mulch. Correlation analysis showed that mulch fumigant retention readings at 3 DAT effectively predict purple nutsedge densities at 5 WAT (r ≤ –0.94). These findings proved that 1,3-D + Pic activity on purple nutsedge can be improved with the use of more retentive films, which cause longer fumigant retention, thus improving efficacy. Growers might elect reducing 1,3-D + Pic rates to compensate for the relatively higher cost of fumigant-retentive mulches, without losing herbicidal activity.
Three separate field trials were conducted to determine the most appropriate planting dates for intercropping cucumber (Cucumis sativus), summer squash (Cucurbita pepo), and muskmelon (Cucumis melo) with strawberry (Fragaria ×ananassa), and their effect on ‘Strawberry Festival’ strawberry yields. ‘Straight Eight’ cucumber, ‘Crookneck’ summer squash, and ‘Athena’ muskmelon were planted every 15 days from 25 Jan. to 23 March. None of the three intercropped species affected strawberry yield up to 60 days before the end of the season on 25 March. Cucumber yield responded quadratically to planting dates, rapidly increasing from 25 Jan. to 23 Feb. and declining afterward. Warmer temperatures favored summer squash yield, with the highest yields when planted on 23 Feb. or later. Muskmelon yields decreased as air temperatures increased, and the best planting dates were between 25 Jan. and 9 Feb. In summary, cucumber and summer squash seemed to be favored by planting under warmer temperatures, whereas muskmelon thrives under cooler weather.
A renewed interest in sulfur (S) deficiency has occurred because of reductions in atmospheric depositions of S caused by implementation of clean air regulations around the world. In vegetable production systems, other sources of S exist, such as soil S, fertilizers, and irrigation water. While soil testing and fertilizer labels impart information on quantity of S, it is unknown how much S within the irrigation water contributes to the total crop requirement. Two studies were conducted to determine the influence of elemental S fertilization rates and irrigation programs on tomato (Solanum lycopersicum) growth and yield. Irrigation volumes were 3528, 5292, and 7056 gal/acre per day and preplant S rates were 0, 25, 50, 100, 150, and 200 lb/acre. Data showed that neither plant height, leaf greenness, soil pH nor total soil S content was consistently affected by preplant S rates. During both seasons, early marketable fruit weight increased sharply when plots were treated with at least 25 lb/acre of preplant S in comparison with the nontreated control. Early fruit weight of extralarge and all marketable grades increased by 1.5 and 1.7 tons/acre, respectively, with the application of 25 lb/acre of S. There were no early fruit weight differences, regardless of marketable fruit grade, among preplant S rates from 25 to 200 lb/acre. Based upon this result, adding preplant S to the fertilization programs in sandy soils improves tomato yield and fall within the current recommended application range of S (30 lb/acre) for vegetables in Florida. At the same time, irrigation volumes did not consistently influence soil S concentration, soil pH, leaf S concentrations or tomato yield, which suggested that irrigation water with levels of S similar to this location [58 mg·L−1 of sulfate (SO4) or 19 mg·L−1 of S] may not meet tomato S requirement during a short cropping seasons of 12 weeks, possibly because microbes need longer periods of time to oxidize the current S species in the water to the absorbed SO4 form.
Florida-produced strawberry (Fragaria ×ananassa) plug transplants (SP) are a potential alternative to bare-root transplants (BR). The adoption of this technology could represent a reduction in water usage for plant establishment and potentially higher early yield, as SP may establish more quickly than BR. Thus, the objective of this study was to evaluate the effect of time in nursery and tray sizes, on early and total strawberry yield for Florida-produced SP for ‘Florida Radiance’, ‘Strawberry Festival’, and Sweet Sensation® ‘Florida127’. Runners from Florida-produced mother plants were collected in mid and late August from 2012 to 2015. SP were grown for either 4 or 6 weeks according to the treatment and established in 30-, 40-, 50-, and 72-cell trays, and compared with BR (control). Additionally, strawberry tips from California were evaluated for SP production. BR consistently had higher early yield than SP, ranging from 36% to 91%, between 2012 and 2016. SP produced the same or higher total yield than BR. Florida-produced SP should be grown for 4 weeks before field transplanting in 50-cell trays based on the results of this study. Furthermore, there was no difference between California and Florida tips for total yield. In all seasons, all SP were established with 20% of the total irrigation water used for the BR. Thus, SP could potentially result in water savings of almost 820,800 gal/acre per season, but the early yield of SP would need to be improved to match BR performance.
Earlier fall planting dates for strawberry (Fragaria ×ananassa) in west-central Florida tend to promote earlier onset of flowering and fruiting. However, warm air temperatures (>28 °C) can result in excessive growth and runner production. Sprinkler irrigation is a common practice to reduce air temperature in the first 10 to15 days after transplanting, requiring large volumes of irrigation water. An alternative to sprinkler irrigation is the application of crop protectants such as kaolin clay after transplanting. The objectives of this study were to determine the optimal planting dates and to assess the most appropriate establishment practices for strawberry bare-root transplants in Florida. Four establishment practices—10 days of sprinkler irrigation (DSI), 10 DSI + kaolin clay, 7 DSI, and 7 DSI + kaolin clay were evaluated for ‘Florida Radiance’ and Sweet Sensation® ‘Florida127’ transplanted in mid September, late September, and early October in consecutive seasons. For ‘Florida127’, September planting dates increased early yield compared with early-October traditional planting dates, with no difference in total yield. Seven DSI followed by the foliar application of kaolin clay at day 8 was also found to increase early yield compared with 10 DSI for strawberry establishment, with annual water savings of 108.7 mm.
Field studies were conducted in three Florida locations (Bradenton, Gainesville, and Quincy) during 1998-99 and 1999-2000 to: 1) compare the performance of two transplant systems under diverse MBr alternative programs in `Chandler' strawberry (Fragaria ×ananassa), and 2) determine the efficacy of these treatments on soilborne pest control in strawberry. Fumigant treatments were: 1) nonfumigated control, 2) methyl bromide plus chloropicrin (MBr + Pic) at a rate of 350 lb/acre, 3) Pic at 300 lb/acre and napropamide at 4 lb/acre, 4) 1,3-dichloropropene (1,3-D) plus Pic at 35 gal/acre and napropamide at 4 lb/acre, 5) metam sodium (MNa) at 60 gal/acre and napropamide at 4 lb/acre, and 6) MNa followed by 1,3-D at 60 and 12 gal/acre and napropamide at 4 lb/acre, respectively. Strawberry transplants were either bare-root or containerized plugs. There were no significant fumigant by transplant type interactions for strawberry plant vigor and root weight per plant, whereas ring nematode (Criconema spp.) and nutsedge (Cyperus rotundus and C. esculentus) populations, and total marketable fruit weight were only infl uenced by fumigant application. The nonfumigated plots had the lowest strawberry plant vigor and root weight per plant in all three locations. In most cases, plant vigor and root biomass per plant increased as a response to any fumigant application. With regard to the transplant type, bare-root transplants had similar plant vigor as plugs in two of the three locations. Fumigation improved nutsedge and ring nematode control. All fumigants had higher early and total marketable yield than the nonfumigated control, whereas transplant type had no effect on total fruit weight.
Field trials were conducted in two locations in Spain to determine the effect of methyl bromide (MBr) alternatives on soilborne diseases and nematodes, and strawberry (Fragaria ×ananassa) yields under high-tunnel conditions. Fumigant treatments were applied to the same plots each year. Treatments were MBr + chloropicrin (Pic) (50:50, v/v) at a rate of 400 kg·ha−1; 1,3-dichloropropene (1,3-D) + Pic (65:35, v/v) at 300 kg·ha−1; Pic at 300 kg·ha−1; dimethyl disulfide (DMDS) + Pic (50:50, v/v) at 500 kg·ha−1; propylene oxide at 550 kg·ha−1; dazomet at 400 kg·ha−1; and calcium cyanamide (Ca-cyanamide) at 700 kg·ha−1. A nontreated control was also included. Fumigation with MBr + Pic, 1,3-D + Pic, Pic, and DMDS + Pic consistently improved early and total marketable strawberry yields in both locations. This response was caused by successful soilborne fungus and nematode control, improving strawberry growth and development, which resulted in increased plant canopy diameters and higher strawberry early and total yield.
Field studies were conducted during four consecutive tomato (Lycopersicon esculentum) -cucumber (Cucumis sativus) rotations to examine the longterm residual effects of tomato methyl bromide (MBr) alternatives on soilborne pests in double-cropped cucumber. Four treatments were established in tomato fields: a) nontreated control; b) MBr + chloropicrin (Pic) (67:33 by weight) at a rate of 350 lb/acre; c) tank-mixed pebulate + napropamide at 4 and 2 lb/acre, respectively, followed by 1,3-dichloropropene (1,3-D) + Pic (83:17 by volume) at 40 gal/acre; and d) napropamide at 2 lb/acre followed by soil solarization for 7 to 8 weeks. Each of the following seasons, cucumber was planted in the same tomato plots without removing mulch films. For nutsedge [purple nutsedge (Cyperus rotundus) and yellow nutsedge (C. esculentus)] densities, napropamide followed by solarization plots had equal control (≤15 plants/m2) as MBr + Pic during all four cropping seasons. However, nematode control with solarization was inconsistent. Marketable yield data proved that fumigation in tomato fields with either MBr + Pic or pebulate + napropamide followed by 1,3-D + Pic had a long-term effect on double-cropped cucumber.