Search Results

You are looking at 21 - 25 of 25 items for

  • Author or Editor: Amy Fulcher x
Clear All Modify Search

As high-input systems, plant production facilities for liner and container plants use large quantities of water, fertilizers, chemical pesticides, plastics, and labor. The use of renewable and biodegradable inputs for growing aesthetically pleasing and healthy plants could potentially improve the economic, environmental, and social sustainability of current production systems. However, costs for production components to integrate sustainable practices into established systems have not been fully explored to date. Our objectives were to determine the economic costs of commercial production systems using alternative containers in aboveground nursery systems. We determined the cost of production (COP) budgets for two woody plant species grown in several locations across the United States. Plants were grown in plastic pots and various alternative pots made from wood pulp (WP), fabric (FB), keratin (KT), and coconut fiber (coir). Cost of production inputs for aboveground nursery systems included the plant itself (liner), liner shipping costs, pot, pot shipping costs, substrate, substrate shipping costs, municipal water, and labor. Our results show that the main difference in the COP is the price of the pot. Although alternative containers could potentially increase water demands, water is currently an insignificant cost in relation to the entire production process. Use of alternative containers could reduce the carbon, water, and chemical footprints of nurseries and greenhouses; however, the cost of alternative containers must become more competitive with plastic to make them an acceptable routine choice for commercial growers.

Free access

US nurseries are experiencing a workforce shortage that is expected to intensify. A mixed-mode survey of decision-makers representing the US nursery industry was conducted in 2021. The survey assessed practices used in 2020 to elicit a better understanding of nursery approaches to the challenges presented by persistent labor scarcity. We compare our results with survey data collected ∼15 years earlier at container nurseries. Survey responses revealed that nurseries were undertaking strategies that aimed to improve production efficiency, better recruit and retain employees, and secure other sources of labor to overcome this shortage. Specifically, more than 65% of surveyed US nurseries increased worker wages, and more than 55% of respondents adopted automation to address the labor shortage. Strategies in use by ≥23% of respondents may limit future growth or jeopardize long-term nursery survival. These include diversifying tasks of current employees, reducing production of labor-intensive plants, or delaying expansion plans. Survey results suggested that production tasks excluding irrigation were on average 31% automated or mechanized at container nurseries, an increase from 16% during the prior survey. Field nurseries were 35% automated or mechanized in 2020. Newly developed or yet-to-be developed automated and mechanized technology (AMT) that decision-makers perceive as being helpful were reported. This article explores linkages between nursery characteristics and AMT adoption and highlights research and extension programming initiatives that are needed to help growers make informed decisions regarding adopting automation.

Open Access

With increased mobile device usage, mobile applications (apps) are emerging as an extension medium, well suited to “place-less” knowledge transfer. Conceptualizing, designing, and developing an app can be a daunting process. This article summarizes the considerations and steps that must be taken to successfully develop an app and is based on the authors’ experience developing two horticulture apps, IPMPro and IPMLite. These apps provide information for major pests and plant care tasks and prompt users to take action on time-sensitive tasks with push notifications scheduled specifically for their location. Topics such as selecting between a web app and a native app, choosing the platform(s) for native apps, and designing the user interface are covered. Whether to charge to download the app or have free access, and navigating the intra- and interinstitutional agreements and programming contract are also discussed. Lastly, the nonprogramming costs such as creating, editing, and uploading content, as well as ongoing app management and updates are discussed.

Full access

Mobile device applications (apps) have the potential to become a mainstream delivery method, providing services, information, and tools to extension clientele. Testing, promoting, and launching an app are key components supporting the successful development of this new technology. This article summarizes the considerations and steps that must be taken to successfully test, promote, and launch an app and is based on the authors’ experience developing two horticulture apps, IPMPro and IPMLite. These apps provide information for major pests and plant care tasks and prompt users to take action on time-sensitive tasks with push notifications scheduled specifically for their location. App testing and evaluation is a continual process. Effective tactics for app testing and evaluation include garnering focus group input throughout app development and postlaunch, in-house testing with simulators, beta testing and the advantages of services that enhance information gained during beta testing, and postlaunch evaluations. Differences in promotional and bulk purchasing options available among the two main device platforms, Android and iOS, are explored as are general preparations for marketing the launch of a new app. Finally, navigating the app submission process is discussed. Creating an app is an involved process, but one that can be rewarding and lead to a unique portal for extension clientele to access information, assistance, and tools.

Full access

Extension and research professionals in the southeastern United States formed the Southern Nursery Integrated Pest Management working group (SNIPM) to foster collaboration and leverage resources, thereby enhancing extension programming, increasing opportunity, and expanding the delivery of specialized expertise to nursery crop growers across a region. Building a productive and lasting working group requires attracting a group of research and extension faculty with complementary expertise, listening to stakeholders, and translating stakeholder needs into grant priorities to help solve problems, all hallmarks of effective teamwork principles. SNIPM has now grown to include 10 U.S. states and 11 institutions and has been awarded seven grants totaling $190,994 since 2009. A striking benefit of working group membership was observed over time: synergy. Greater awareness of individual expertise among SNIPM members, each of whom were focused on different aspects of the nursery production system stimulated multistate extension publications, electronic books (eBooks), mobile device applications (apps), popular press articles, and spin-off research projects when separate foci were combined and directed toward complex challenges. Deliverables achieved from this faculty collaboration include nine peer-reviewed publications, four manuals and books and 23 book chapters, and a combined total of 11 abstracts, conference proceedings and extension publications. To date, the return on investment for SNIPM is one deliverable produced to every $2265.89 in grant funding. SNIPM has also been honored with multiple American Society for Horticultural Science publication awards as well as the Southern Region Integrated Pest Management Center Bright Idea Award for the quality and originality of their project outputs. Continuing to work together toward common goals that bridge technology and serve the nursery industry while supporting each individual member’s program will be crucial to the long-term success of this working group.

Full access