Search Results
You are looking at 21 - 23 of 23 items for
- Author or Editor: Alex Niemiera x
Newly transplanted container-grown landscape plants are reported to require very frequent irrigation. However, container nurseries in the U.S. commonly use growing substrates that are mostly bark, even though the contribution of bark-based growing substrates to water relations of transplanted root balls is unknown. Therefore, a field experiment was undertaken to determine water relations of a pine-bark substrate (container removed) within a drying mineral soil over a three week period. A range of common production container sizes—3.7 L (#1), 7.5 L (#2), 21.9 L (#7), 50.6 L (#15), and 104.5 L (#25)—was used. The fraction of substrate volume that is water [total volumetric water (TVW)] within the top and middle zones of substrate was compared to TVW at corresponding depths of adjacent mineral soil. The fraction of substrate and soil volume that is plant-available water [plant-available volumetric water (PAVW)] was calculated by subtracting the fraction of substrate or soil volume below where water is unavailable to most plants (measured with pressure plates) [plant-unavailable volumetric water (PUVW)] from each TVW measurement. The pine-bark substrate had a PUVW of 0.32 compared to a PUVW of 0.06 for soil. Top sections of substrate dried to near zero PAVW 6 days after irrigation for all containers. Larger container sizes maintained higher PAVW in middle sections than smaller container sizes, and PAVW was always higher in the adjacent soil than in the embedded substrate. Overall, very little PAVW is held by the embedded pine-bark growing substrate, suggesting the need for container substrates with greater water retention once transplanted to mineral soils.
Recent interest in the use of wood substrates in horticulture crop production has justified the need for determining fertilizer requirements in these substrates compared with traditional pine bark (PB) and peatmoss substrates. The objective was to determine the response of japanese holly (Ilex crenata Thunb. ‘Compacta’) and azalea (Rhododendron obtusum Planck. ‘Delaware Valley’) grown in a pine tree substrate (PTS) (trade name WoodGro™) or milled PB to fertilizer rate. Pine tree substrate is produced from freshly harvested loblolly pine trees (Pinus taeda L.) that are delimbed, chipped, and ground in a hammer mill to a desired particle size. Japanese holly plants were grown in 2.8-L containers in the fall of 2005 and again in the spring of 2007 with the addition of azalea. Plants grown in PTS or PB were fertilized by incorporating Osmocote Plus fertilizer (15N–3.9P–10K) at rates of 3.5, 5.9, 8.3 or 10.6 kg·m−3 for japanese holly and 1.2, 3.5, 5.9, or 8.3 kg·m−3 for azalea. After 3 months, shoot dry weights were determined for japanese holly and azalea. Japanese holly root dry weights were determined for both experiments, and substrate CO2 efflux (μmol CO2 m−2·s−1) was measured on the treatments at the end of the experiment using a LI-6400 soil CO2 flux chamber. In 2005, japanese holly shoot dry weights of PTS-grown plants were comparable to plants grown in PB at the 8.3 kg·m−3 fertility rate, and shoot dry weights of PTS-grown plants were higher than PB at the 10.6 kg·m−3 rate. In 2007, japanese holly and azalea shoot dry weights of PTS-grown plants were comparable to PB plants at the 5.9 kg·m−3 fertilizer rate. Both japanese holly and azalea achieved shoot growth in PTS comparable to shoot growth in PB with ≈2.4 kg·m−3 additional fertilizer for PTS. Substrate CO2 efflux rates were higher in PTS compared with PB indicating higher microbial activity, thereby increasing the potential for nutrient immobilization in PTS.
An understanding of how dissolved mineral nutrient ions (solutes) move through pine bark substrates during the application of irrigation water is vital to better understand nutrient transport and leaching from containerized crops during an irrigation event. However, current theories on solute transport processes in soilless systems are largely based on research in mineral soils and thus do not necessarily explain solute transport in soilless substrates. A study was conducted to characterize solute transport through a 9 pine bark:1 sand (by volume) substrate by developing and analyzing breakthrough curves (BTCs). Columns filled with pine bark substrate were subjected to the application of a nutrient solution (tracer) and deionized water under saturated and unsaturated conditions. Effluent drained from the columns during these applications was collected and analyzed to determine the effluent concentration (C) of the bulk ions in solution through electrical conductivity (EC) and nitrate (NO3 –), phosphate, and potassium (K+) concentrations. The BTCs were developed by plotting C relative to the concentration of the input solution (Co) (i.e., relative concentration = C/Co) as a function of the cumulative effluent volume. Solutes broke through the column earlier (i.e., with less cumulative effluent) and the transition from C/Co = 0 to 1 occurred more abruptly under unsaturated than saturated conditions. Movement of the anion, NO3 –, through the substrate was observed to occur more quickly than the cation K+. Throughout the experiment, 37% of the applied K+ was retained by the pine bark. The adsorption of K+ to pine bark cation exchange sites displaced calcium (Ca2+) and magnesium (Mg2+), of which the combined equivalent charge accounted for 43.1% of the retained K+. These results demonstrate the relative ease that negatively charged fertilizer ions could move through a pine bark substrate while solution is actively flowing through substrate pores such as during irrigation events. This approach to evaluating solute transport may be used in horticultural research to better understand how mineral nutrients move through and subsequently leach from soilless substrates during irrigation. Expanding this knowledge base may lead to the refinement of production practices that improve nutrient and water use efficiency in container nurseries.