Search Results

You are looking at 11 - 20 of 39 items for

  • Author or Editor: Thomas Yeager x
Clear All Modify Search

Abstract

Research indicates P and S leach rapidly from soilless media amended with ordinary superphosphate (2). Since these elements are in the form of anions, an amendment with a high anion exchange capacity may reduce their leaching from soilless media. In the following study, an anion exchange resin was used to test this theory.

Open Access

Abstract

Columns of an incubated (25°C, 11% volumetric moisture for 30 days) 2 milled pine bark : 1 Canadian sphagnum peat : 1 builders’ sand (by volume) medium amended with the equivalent of 270 g P·m−3 from radioactive superphosphate (8.7% P) and the equivalent of 0, 33, 200, or 1200 g Al·m−3 from aluminum acetate (13.2% Al) were leached daily with 16 ml deionized water. Eighty percent of the 32P amendment leached during days one to 21 from the medium not amended with Al, whereas 0.3% leached when amended with 1200 g Al·m−3. Leachate 32P levels ranged from 840, 711, 91, and 2.0 μg·ml−1 on day 1 to 2.3, 3.3, 7.6, and 0.9 μg·ml−1 on day 77 for the medium with Al amendments of 0, 33, 200, and 1200 g·m−3, respectively.

Open Access

Abstract

Fertilizer is the 2nd largest supply item purchased by commercial nurseries (1). The cost of fertilizer and labor for application has been estimated as 11% of production costs for a container nursery (2). Although fertilization (fertilizer and labor) costs are a small part of production costs, they are manageable. Thus, the ability to calculate fertilization cost accurately and rapidly assists the nursery operator in making timely management decisions. A microcomputer program was developed to calculate fertilization cost per container for one or combinations of the following methods of fertilizer application (MOA): broadcast, incorporation, injection, and top-dress.

Open Access

Ligustrum japonicum, Rhododendron indica `Southern Charm' and Viburnum odoratissimum in 10-L containers were placed in a square grid pattern and overhead irrigated using impact sprinklers (30.3 L/min). Plants were irrigated with 12.5 mm with containers touching and, at 5 cm spacings, up to 50 cm between containers. Irrigation water reaching container surfaces (percent capture) increased for all species as container spacing increased. However, the increase in percent capture did not increase irrigation application efficiency because the percent of production area covered by the containers declined as spacing increased. Application efficiency declined with each increase in spacing to a low of 7%. The effects of intraand inter-canopy interference are discussed.

Free access

Multiple branched liners of Rhododendron sp. cv. Duc de Rohan were potted in 3-L containers using a 5 pine bark: 5 Florida peat: 1 sand medium (by volume) amended with Prokote Plus (20N–1.3P–8.3K, 9.2 kg·m–3) and placed on one of five treatment platforms (1.2 × 2.4 m) in a commercial nursery in Manatee County, Fla. Treatments were 88 plants per square grid with containers touching (T1), 44 plants per square grid with containers touching (T2), 44 plants per square grid with containers touching in rows and 15 cm between rows (T3), 22 plants per square grid with containers touching (T4), and 22 plants per square grid with 15 cm between containers in rows and 15 cm between rows (T5). Irrigation was applied by overhead impact nozzles (0.13 cm/0.5 h) before collecting runoff. Runoff volume was measured and ppm nitrate N determined on day 6, 23, 38, 63, 92, 161, 189, 217, and 274. Average nitrate N ranged from 97 ppm for T1 to 10 ppm for T5 and corresponded to volumes of 19 and 20 L, respectively. Volumes were not different due to spacing or number of containers; however, nitrate N increased linearly with container number when containers were touching (T1, T2, and T4). Nitrate N in runoff was similar for the same number of containers regardless of spacing.

Free access

A survey was conducted of nursery operators participating in workshops in west-central Florida. The purpose of the survey was to identify the irrigation best management practices (BMPs) adopted by container nurseries in west-central Florida and obtain information regarding emphasis of future extension educational programs. Workshops were conducted in Hillsborough County, Fla., and Manatee County, Fla., and participation was voluntary. Respondents were asked about BMPs used in the nurseries according to the irrigation system used and it was found that the majority of the nurseries relied on well water as the primary source for irrigation. While 69% of the nurseries monitored uniformity of microirrigation systems, only 35% monitored uniformity of overhead irrigation systems. Thirty-four percent of the nurseries collected irrigation or rain runoff and 9% knew the water holding capacity of their substrate. Most of the nurseries grouped plants by irrigation requirements (74%) and grouped container sizes by irrigation requirements (69%). The survey indicates that many BMPs are not widely adopted by nurseries in west-central Florida. The information from this survey can be used as a guide to focus the efforts of university extension educational programs to achieve greater adoption of BMPs.

Full access

In crop models, it is important to determine the leaf area, because the amount of light interception by leaves influences two very important processes in the plant: photosynthesis and evaporation. Leaf area is dependent on leaf appearance and expansion rates. Leaf appearance rate is driven mainly by temperature. Although the influence of temperature on leaf area development is well known for several agronomic crops, there is no information for woody ornamentals. An experiment was conducted to study the relationship between temperature and leaf appearance of container-grown sweet viburnum. Plants were grown in field conditions in Gainesville, Fla., during two growing periods (Apr. to Aug. 2004 and Aug. 2004 to Jan. 2005). Daily maximum and minimum temperature and leaf appearance were recorded. Linear regression equations were fitted to data and maximum and minimum temperature and leaf appearance were recorded. Linear regression equations were fitted to data and base temperature was assumed to be 8 °C. Thermal time (°C d) was calculated as daily average maximum and minimum air temperature minus the base temperature and was regressed against leaf number. The sum of accumulated thermal time was found to be linearly correlated with leaf number. Phyllochron, which is the thermal time between the appearances of successive leaves, was estimated 51 °C per day. The information presented in this study will be useful in modeling water use of sweet viburnum in response to environmental conditions.

Free access

Irrigation that decreases the leaching fraction (LF; leachate/water applied) has been shown to reduce fertilizer N and P leaching during the production of sprinkler-irrigated, container-grown plants; however, little research involving outdoor production of microirrigated plants in large containers has been conducted. Two microirrigation schedules based on routine leaching fraction testing were compared to determine their effects on water use and leaching losses of N and P during the production of Dwarf Burford holly in 36-cm-diameter (trade #7) containers. Applied irrigation water and leachate were collected continuously and sampled weekly during the 12-month experiment. An irrigation schedule adjusted once every 1 to 3 weeks to a target LF of 20% resulted in the application of 36% less water (383 vs. 597 L/plant) and 43% less leachate (255 vs. 445 L/plant) than a schedule adjusted to a target LF of 40%; plant growth was unaffected (P > 0.05). Irrigation schedules had no effect (P > 0.05) on cumulative N and P leaching losses, which were attributed in large part to rain. Average leaching losses of N and P were 15.2 and 2.2 g per container (210 and 30 kg·ha−1·year−1), respectively. Both N and P leaching losses represented 35% of the 43.5 g N and 6.3 g P applied per container in two controlled-release fertilizer applications. The results support the best management practice of scheduling irrigation based on routine LF testing to reduce irrigation water use but not reduce N and P leaching.

Open Access

The capacity for container-grown plants to capture sprinkler irrigation water plays a critical role in adjusting irrigation rates to deliver required amounts of water to the container substrate. The capture factor (CF) used to describe this capacity was defined as the amount of water captured with a plant relative to the amount captured without a plant. A wind-sheltered, irrigation test area was established to measure CF as affected by plant species, plant size, container size, container spacing, and sprinkler type. CF values for 11 marketable-sized, commonly grown plant species ranged from 1 to 4 with highest values exhibited by plant species with an upright, spreading growth habit. CF values increased as plant size increased. Close container spacings (less than one container diameter between adjacent containers) reduced CF when the allotted area outside the container limited the potential amount of water that could be captured. Compared with impact sprinklers, wobbler sprinklers increased irrigation capture 7% for Ligustrum japonicum grown in 27-cm-diameter containers but not in 16-cm-diameter containers. Results showed that CF is a dynamic parameter that depends on canopy size, container size, container spacing, and sprinkler type. A working knowledge of CF is crucial for determining irrigation requirements to maximize sprinkler irrigation efficiency in container nurseries.

Free access

Two experiments were conducted to determine if a leaching fraction (LF)-guided irrigation practice with fixed irrigation run times between LF tests (LF_FX) could be improved by making additional adjustments to irrigation run times based on real-time weather information, including rain, using an evapotranspiration-based irrigation scheduling program for container production (LF_ET). The effect of the two irrigation practices on plant growth and water use was tested at three target LF values (10%, 20%, and 40%). For both Viburnum odoratissimum (Expt. 1) and Podocarpus macrophyllus (Expt. 2) grown in 36-cm-diameter containers with spray-stake microirrigation, the change in plant size was unaffected by irrigation treatments. LF_ET reduced water use by 10% compared with LF_FX in Expt. 2 but had no effect (P < 0.05) on water use in Expt. 1. Decreasing the target LF from 40% to 20% reduced water use 28% in both experiments and this effect was similar for both irrigation practices. For the irrigation system and irrigation schedule used in these experiments, we concluded that an LF-guided irrigation schedule with a target LF of 10% resulted in plant growth similar to one with a target LF of 40% and that the addition of a real-time weather adjustment to irrigation run times provided little or no improvement in water conservation compared with a periodic adjustment based solely on LF testing.

Open Access