Search Results

You are looking at 11 - 20 of 22 items for

  • Author or Editor: Teryl R. Roper x
Clear All Modify Search

This experiment was conducted to determine temporal weed management parameters for tart cherry (Prunus cerasus L.) orchards. Annual ryegrass (Lolium multiflorum L.) and lambsquarter (Chenopodium album L.) were planted in tree rows of a 4-year-old tart cherry orchard. Weeds either were not controlled or controlled with nonresidual herbicides during the following intervals: all-summer; May, June, July, or August; preharvest (April-July); or postharvest (late July to frost). Trees in all-summer, June, and preharvest weed-free plots had more shoot growth, more nodes, longer internodes, greater leaf area, and higher concentrations of leaf nitrogen than did those in the weedy control and postharvest, July, or August treatments. A larger increase in trunk circumference was observed in all-summer and preharvest weed-free plots than in postharvest and weedy plots. Early-summer weed control was important for tree vegetative growth. Tree yield (fruit weight and number) was greater on trees without weed competition postharvest than in those treated in May, June, July, or in weedy controls. Late-season (after late July) weed control is therefore important for fruit yield.

Free access

This experiment was conducted to determine temporal and spatial weed management characteristics for tart cherry orchards. Annual ryegrass and lambsquarter were planted in tree rows of a 14-year-old tart cherry orchard. Vegetation was controlled with nonresidual herbicides (Gramoxone + B-1956) either all season, May, June, July, August, before harvest, after harvest, or not controlled. Shoot growth measurements showed significantly more growth by trees without weed competition during the entire season, May, June, and before harvest compared to the weedy control and postharvest, July, or August treatments. Weedy early season plots reduced the shoot growth by half. All season, before harvest, May, and June weed-free plots showed higher amounts of leaf N compared with weedy controls or late-season treatments. Early season weed control is more important than late season. Vegetation-free areas of 0, 2, 3, and 4 m2 were maintained during 1998 by postemergence herbicides. Tissue analysis showed higher N concentration in leaves with vegetation controlled to 2 m2 or more compared to the weedy control. The critical vegetation free area for young cherry trees is between 0 and 2 m2.

Free access

Cranberry (Vaccinium macrocarpon Ait.) vines were shaded with either 72% or 93% shadecloth (28% or 7% of full sun) for 1 month before flowering, after flowering, or before harvest. Fruit set was reduced by heavy shade (93%) before flowering in 1991 but not in 1992 or 1993. Heavy shade following flowering reduced fruit set in 1991 and 1992 but not 1993. The number of flowers per upright was generally not affected by shading but was reduced by prebloom shading at either level in 1993. Mean berry weight was usually conserved. Yield was reduced by shading at either level following flowering in 1991 and 1992. Shading just before harvest had no effect on the characteristics measured. Total nonstructural carbohydrate concentration was reduced to about half relative to the controls by either shading level at all treatment dates. Carbohydrate concentrations recovered to control levels by 4 to 8 weeks following removal of shading. Shading always reduced carbohydrate concentrations but did not always reduce fruit set or yield.

Free access

The effect of rootstock on apple size is not clear due to inconsistent results of published studies. This study was conducted over 3 years at the Peninsular Agricultural Research Station near Sturgeon Bay, WI on 6-year-old `Gala' apple trees (Malus domestica Borkh) grafted on Malling 26 (M.26), Ottawa 3, M.9 Pajam 1, and Vineland (V)-605 rootstocks. Fruit diameter was measured weekly. Fruit weight and volume were estimated by a quadratic regression of weekly measurements. Fruit weight was positively correlated with fruit volume. Rootstock had no effect on fruit growth and final size even with the removal of crop load effects. Crop load was a highly significant covariate for fruit size, but canopy light interception and seed count were not. Trees on M.26 EMLA had slightly higher yield in 2000 but rootstock did not affect yield efficiency any year. Rootstock had no influence on fruit quality attributes during 2001; however, in 2002, fruit obtained from trees on Pajam-1 tended to be less firm. Generally, apple fruit size was influenced by crop load and other factors, but not by rootstock.

Free access

The effects of rootstock on growth of fruit cell number and size of `Gala' apple trees (Malus domestica Borkh) were investigated over three consecutive seasons (2000-02) growing on Malling 26 (M.26), Ottawa-3, Pajam-1, and Vineland (V)-605 rootstocks at the Peninsular Agricultural Research Station near Sturgeon Bay, WI. Fruit growth as a function of cell division and expansion was monitored from full bloom until harvest using scanning electron microscopy (SEM). Cell count and cell size measurements showed that rootstock had no affect on fruit growth and final size even when crop load effects were removed. Cell division ceased about 5 to 6 weeks after full bloom (WAFB) followed by cell expansion. Fruit size was positively correlated (r 2 = 0.85) with cell size, suggesting that differences in fruit size were primarily a result of changes in cell size rather than cell number or intercellular space (IS).

Free access

Abstract

Potted sweet cherry (Prunus avium L.) trees, grown under constant environmental conditions, were used to determine characteristics of leaf photosynthetic development separate from environmental influences. A maximum rate of photosynthesis of 38 mg CO2/dm2 (per hour) was reached at a leaf plastochron index (LPI) of 10, which is about 80% of full leaf expansion. During development, CO2 compensation points decreased to about 25 μl·liter−1 CO2 at LPI 12, but gradually increased to a value of about 35 for mature leaves. Of 3 leaf ages studied, (LPI 5, 10, and 15) response to low O2 was the least at LPI 10. Carboxylation efficiency doubled between LPI 5 and 10, while stomatal conductance was highest and mesophyll resistance was lowest from about LPI 10 to 13. Light saturation occurred at about 500 μmol·s−1·m−2, and optimal temperature for photosynthesis in sweet cherry was 19° to 25°C. Light and temperature effects were apparently independent of leaf age. Our results indicate major influences of leaf development on photosynthesis in sweet cherry and serve as the basis of continuing studies aimed at the importance of leaf developmental stage for cultural and production practices.

Open Access

The uptake efficiency of apple scions and rootstocks has not been studied in the field. Using 15N (ammonium nitrate, 1 atom % 15N) we compared nitrogen uptake efficiency of 12 rootstocks grafted to one scion (Gala) and of 20 scions on the same clonal rootstock (M.9 EMLA) in orchards located in northeastern Wisconsin. Trees were treated in either Fall or Spring 1998 with 40 g actual N per tree applied as a liquid to the soil. N uptake was assessed by measuring 15N in leaf and wood tissue taken monthly from June to Oct. 1998. Tissues were oven-dried and analized using a ratio mass spectrometer. Treatment differences were greater among scions with the same rootstocks than among rootstocks with the same scion. Total N and 15N content differences were found between roostocks and these values were inversely related to tree size.

Free access

This research was undertaken to document the extent of biennial bearing in flowering uprights by American cranberry (Vaccinium macrocarpon Ait) cultivar and growing region. Seven cultivars were studied: three found in all states considered (Massachusetts, New Jersey, Wisconsin, Oregon), two common to Massachusetts and New Jersey, and two other commercially grown cultivars, one each from Wisconsin and Oregon. There were significant cultivar, region, and cultivar × region interaction effects for both percent return bloom (%RB) and percent return fruit (%RF). Percent RB ranged from 74% for `Ben Lear' in Wisconsin to 14% for `Howes' in New Jersey. `Ben Lear' differed the most in %RB among regions, from 74% in Wisconsin to 14% in Massachusetts. However, in some regions, especially in Wisconsin, many blossoms did not set viable fruit. There was no significant difference in %RB among cultivars grown in Massachusetts or Oregon; however, cultivars grown in these regions did differ in %RF.

Free access

Nitrogen (N) uptake was compared on 10 dwarf apple rootstocks (M.9 EMLA, M.26 EMLA, M.27 EMLA, M.9 RN29, Pajam 1, Pajam 2, B.9, Mark, B.469, and M.9 T337) grafted with the same scion (`Gala') in a four year-old orchard. Trees were treated in either Spring or Fall 1998 with 40 g of soil applied actual N per tree using ammonium nitrate enriched to 1% 15N. Both percentage of N (%N) and N from fertilizer (NFF) in leaf tissue were highly affected by the rootstock and the season of N application. Generally, higher %N and NFF were observed for spring than fall applications, except for leaves collected during early June 1998. Generally, M.26 EMLA, M.27 EMLA, and M.9 RN29 were the most efficient rootstocks in N uptake for spring applied nitrogen. M.9 EMLA was most efficient late in the season following fall application. Mark was more efficient early in the season for fall applied N than spring application. However, trees on Mark rootstock had the lowest %N throughout the season regardless of the time of N application. Pajam 1 and Pajam 2 were the least efficient rootstocks in N uptake following fall N application. Rootstock also significantly affected %N and NFF of wood tissue. Generally, trees on B.469 had the highest %N in their wood regardless of the season of application. No single rootstock had consistently higher N from fertilizer in their wood tissue after spring application. At the May 1999 sampling date, M.26 EMLA had higher NFF than M.27 EMLA, Pajam 1, Pajam 2, and B.9 with a fall application. Other rootstocks were intermediate. Samples collected in August showed that Pajam 1 was the least efficient rootstock in N uptake for fall applied N compared to other rootstocks, except for Pajam 2 and B.9 that were intermediate. Leaf and wood tissue analysis showed that different rootstocks had different N uptake efficiencies throughout the season. Generally, M.26 EMLA, M.27 EMLA, M.9 RN29 and M.9 EMLA were more efficient at N uptake regardless the season of N application. Pajam 1 and Pajam 2 were the least efficient.

Free access

It is commonplace in Wisconsin for cranberry growers to flood their beds to form thick ice during winter to protect the uprights from dangerously low winter air temperatures. However, the specifics of ice thickness and zone temperature within and below the ice vs. surface air temperature have not been studied. We have developed several models using finite element analysis, a process by which a complex system is divided into finite segments and analyzed individually. All pieces are then recombined into the complete system so a comprehensive picture of the activity of the freezing cranberry bed may be visualized. It was determined that cold surface air temperatures of -25 °C and thin ice of 15 cm, soil and gap air temperatures do not drop lower then -5 °C, which is congruent with data collected from the field. Models on sand beds and peat beds did not show enough difference to be of concern. Temperatures within the ice, where the uprights would be encased, reached -15 °C under the cold air regime, which has been proven to be well within the survival range of the dormant buds.

Free access