Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: T. T. Muraoka x
Clear All Modify Search

Experiments were conducted to determine if differential responses of walnut pollen germination to temperature, previously observed to occur among genotypes, were genetically fixed or expressions of phenotypic plasticity representing adaptive responses to temperatures experienced during pollen development. Individual branches of a single walnut (Juglans regia L. cv. Serr) tree were warmed above ambient conditions during the final stages of pollen differentiation by directing a stream of moist, heated air into polyethylene enclosures, each containing an individual branch unit. Pollen was collected at staminate anthesis and incubated in germination medium on a temperature gradient apparatus. Model curves fitted to the in vitro pollen germination data were used to determine optimum germination temperatures. We found adaptive responses of pollen germination to temperatures experienced during pollen development. The optimum temperature for in vitro germination for pollen from branches maintained under ambient conditions was lower than that of pollen from branches with elevated temperature, and optimum germination temperature increased as a log function of integrated daily temperature (degree-days) experienced during pollen development.

Free access

Nitrogen (N) deficiency reduced biomass and altered N allocation within large walnut tree canopies (Juglans regia L. cv Serr). N-fertilized control trees contained 2.5 times more N in current year spurs, leaves and fruit than did those of N-deficient trees. The N content and biomass allocated to kernels was reduced in N-deficient canopies to a greater extent than was al location to current year shoots and foliage. N removal in abscised leaves and fruit was 3 times greater in canopies of fertilized trees than in N-deficient trees.

A non-destructive method is described to calculate total spur, leaflet and fruit numbers. Calculations were based on ratios of fruit counts on selected scaffold limbs to total fruit number per tree. Dry weight and N content of representative spurs, leaflets and fruit permitted estimation of whole canopy biomass and N content in these organs. N contained in current year spurs and the N lost from the tree in fruit and leaf litter were calculated for both N-fertilized control and N-deficient trees.

Free access

Estimates of leaflet and fruit macronutrient (N, P, K, Ca, and Mg) accumulation and resorption were developed in six (three heavily cropping, on-year and three noncropping, off-year) mature pistachio (Pistacia vera L. `Kerman') trees over three growing seasons during three stages of phenology [the spring growth flush (April to June); seed fill (late June to September); and leaf senescence (September to November)]. Crop load influenced total nutrient content per tree in annual organs (leaves and fruit), the relative allocation of nutrients between leaves and fruit, temporal patterns of nutrient accumulation in annual organs, and the magnitude of net leaf nutrient resorption per tree prior to leaf fall. In off-year trees, macronutrient accumulation in annual organs (leaves) was concentrated during the spring flush of growth. In contrast, significant macronutrient accumulation in annual organs of on-year trees (leaves plus fruit) occurred not only during the spring flush of growth but also during seed fill. Duration and magnitude of macronutrient accumulation were greater in on-year vs. off-year trees. Fruit N and P demand during seed fill was partially met by a net decrease in the N and P contents of the pericarp. These decreases in pericarp nutrient content during seed fill were equivalent to 32% and 26% of embryo accumulation of N and P, respectively. Fruit demand for N, P, and K during the spring flush of “on” years was accompanied by reduced leaf N, P, and K contents per tree. Net leaf N, Ca, and Mg resorption per tree during leaf senescence differed with crop load. Net leaf N resorption was significantly greater in off-year trees than on-year trees. Leaf N resorption presumably represents an important component of the N pool stored in perennial tree parts during dormancy. The greater leaf N resorption following “off” years was a function of greater leaf N concentration and greater leaf biomass per tree. In contrast, net leaf resorption of Ca and Mg was greater in on-year vs. off-year trees. Experimental validation of the magnitude and periodicity of nutrient uptake by mature pistachio trees is needed during the alternate-bearing cycle, especially in light of the potential contribution of current fertilization practices to groundwater contamination.

Free access

The effects of alternate bearing on recovery and loss of isotonically labeled fertilizer N and B and on the accumulation of carbohydrate and N reserves were assessed in mature `Kerman' pistachio (Pistacia vera L.) trees. Total recovery of labeled fertilizer N applied once (in late January) was ≈ 60% greater if applied to trees entering an “off' than an “on” year, with respect to fruiting. Eleven percent more labeled B was recovered in off- than on-year trees. Five times more N (1 vs. 0.2 kg N) was lost from the tree in fruit and senescent leaflets from on- than off-year trees. In dormant trees, 144% and 22% more starch and N reserves, respectively, were present after off than on years. Thus, on-year trees were characterized by a greater reproductive demand for N and carbohydrates, reduced accumulation of C and N (i.e., storage) reserves in perennial tree parts, and reduced recovery of January-applied labeled fertilizer N than off-year trees. As B is absorbed passively, the higher transpiration that may accompany the 43% larger leaf area per tree and the probability of increased root growth probably contributes to its increased uptake during off years. The enhanced labeled N recovery in early spring by trees entering their off year preceded fruit and seed development in on-year trees. The differential tree capacity for nutrient uptake in spring may have been conditioned the previous rather than the current year. The increased uptake of labeled N by trees entering an off year (i.e., emerging from an on year) was associated with lower levels of carbohydrate and N reserves than for on-year trees that had just completed an off year. Future experimentation should assess the comparative capacity for nutrient uptake by on-and off-year trees at other stages of phenology, e.g., during seed development and postharvest.

Free access

Abstract

Mature almond [Prunus dulcis (Mill) D.A. Webb] trees growing on light-(Delhi sand) and heavy-textured (Yolo silty clay loam) soils were fertilized with 15N-depleted ammonium sulfate at different times during the year to permit direct measurement of fertilizer N within the trees. The distribution of fertilizer N between vegetative and reproductive organs was monitored during both the year of application, 1980, and the subsequent year. The later that fertilizer N was applied during the season, the less fertilizer N was recovered in the fruit and leaves that year, and the greater its N contribution to these organs was the following year. Isotopic labeling of fruit and leaves appeared to be relatively unaffected by soil texture during the year of fertilizer application. During the subsequent year, however, the recovery of fertilizer N by fruit and leaves was 2-fold greater on the heavy-textured soil than on the light-textured soil. Recovery of labeled N in fruit was relatively low on both soil types following application of fertilizer during the dormant period. Isotopic N was recovered in fruit in both 1980 and 1981 and constituted about 20% to 28% of fruit N at most. About 25% of the applied N was removed in the fruit on the heavy-textured soil over a 2-year period. Up to 1 kg N per tree was removed annually in the harvested fruit.

Open Access

Leaf dry weight per leaf area (LDW/LA); weight of leaf N per unit leaf area (LN/LA); leaf dry weight (LDW); and fruit quality, particularly sugar per fruit (SF); fruit fresh weight (FFW); and fruit dry weight (FDW) were measured over a range of daily average incident photosynthetic photon flux values (PPF) (50 to 1000 μmol·s-1·m-2) in 7-year-old prune (Prunus domestics L. syn. `Petite d'Agen') tree canopies. Linear or curvilinear relationships between these leaf attributes and fruit characteristics were significant over the PPF range. Analysis of LDW/LA or LN/LA may be used to indicate tree canopy locations in which fruit size and quality is limited by suboptimal PPF.

Free access

Abstract

The relationship between canopy position and foliage concentrations of several phloem-mobile and -immobile essential nutrients was determined over a 20-fold range of average incident photosynthetic photon flux (PPF) (50 to 1000 μmol·s−1·m−2) in 7-year-old prune (Prunus domestica L., syn. ‘Prune d’Agen’) tree canopies. Mineral weight per unit of leaf area (LA) increased with increasing PPF within the canopy according to the relationship N > Ca > Mg > K > P. Dry weight per leaf area (DW/LA) increased 3-fold over the range of light exposures sampled. Leaf nutrient concentration expressed as percent dry matter (DM) did not vary with PPF. Both DW/LA and leaf N/LA appear to integrate the light microenvironment at the canopy coordinates of leaves sampled and may be correlated with photosynthetic capacity. Thus, these parameters may have diagnostic value in orchard management and crop production.

Open Access

There is legitimate concern that excessive fertilizer nitrogen (N) application rates adversely affect groundwater quality in the San Joaquin Valley of California. A 5-year study was conducted to assess the interrelationships between N fertilization rates, tree productivity, leaf [N], soil [NO 3], tree recovery of isotopically labeled fertilizer N, and NO 3 leaching. High N trees recovered <50% as much labeled fertilizer N in the crop as did trees previously receiving low to moderate fertilizer application rates. Our data suggest that the dilution of labeled N in the soil by high residual levels of NO 3 in the soil had a greater effect than tree N status (as expressed by leaf N concentration) on the relative recovery of fertilizer N.

Free access

Four adjacent heavily cropping 12-year-old `Petite d'Agen' prune (Prunus domestica L.) trees were selected, and two of the trees were defruited in late spring (28 May) after the spring growth flush and full leaf expansion. Trees received K daily through the drip-irrigation system, and 15N-depleted (NH4)2SO4 was applied twice between the dates of defruiting and fruit maturation. Trees were excavated at the time of fruit maturity (28 July) and fractionated into their component parts. The following determinations were made after tree excavation and sample processing: tree dry weight, dry weight distribution among the various tree fractions (fruit, leaves, roots, trunk, and branches), tree nutrient contents, within-tree nutrient distribution, total nonstructural carbohydrates (TNCs), and recovery of labeled N. Trees only recovered ≈3% of the isotopically labeled fertilizer N over the 6-week experimental period. Heavily cropping trees absorbed ≈9 g more K per tree (17% of total tree K content) during the 2-month period of stage III fruit growth than defruited trees. The enhanced K uptake in heavily cropping trees was apparently conditioned by the large fruit K demand and occurred despite greatly reduced levels of starch and TNCs relative to defruited trees. Fruit K accumulation in heavily cropping trees was accompanied by K depletion from leaves and perennial tree parts. Except for K, fruited and defruited trees did not differ in nutrient content.

Free access