Search Results
You are looking at 11 - 20 of 34 items for
- Author or Editor: Stan Hokanson x
Anticipating the phaseout of methyl bromide, the USDA-ARS small fruit breeding program at Beltsville, Md., discontinued soil fumigation in strawberry breeding and selection trials in the mid 1990s. To address resulting weed and pathogen pests, a modified or advanced matted row system was developed. This system uses matted row-type culture, established on raised beds with subsurface drip irrigation and organic mulch. The mulch is the residue of a killed cover crop that fixes some nitrogen and provides an economical, biodegradable mulch for suppressing weeds and reducing erosion. Since 1996, the small fruit breeding program has conducted replicated performance trials on both advanced matted row and a regional adaptation of annual hill plasticulture. Both of these systems were managed without methyl bromide fumigation or fungicide application. Data from these trials were used to compare advanced matted row and plasticulture for yield, fruit quality and harvest season. Yield for the two systems was genotype dependent, and the advanced matted row system had later production and slightly lower fruit quality.
Prairie dropseed [Sporobolus heterolepis (A. Gray) A. Gray] is a critical North American native grass that is often not incorporated into prairie restoration seed mixes due to its low survival and growth rates. This project investigated using hydrogels, landscape plugs, and native field soil to improve the survival and growth of prairie dropseed. At three tallgrass prairie restoration sites at the Minnesota Landscape Arboretum, we planted prairie dropseed plugs in Fall 2019, Spring 2020, and Fall 2020. When grown in the field from 42 to 94 weeks, we found that potting mix–grown plugs had increased growth as measured by dry weight compared with plugs grown in native soils. Soil medium did not influence survival rates. The use of hydrogels did not demonstrate increased survival or growth compared with plugs planted with water. We recommend land managers and restorationists use plugs grown in commercial potting mix rather than grown in native soils, and we found no advantage in using hydrogels over watering at planting.
Forty deciduous azalea (Rhododendron sp.) cultivars from commercial sources were evaluated for powdery mildew (Microsphaera sp.) resistance. Plants were established in two duplicate field plantings in Ohio and Minnesota and evaluated in 2002 and 2003. Plants were scored using a disease symptom rating based on the percent of leaf area infected, evaluating both ab- and adaxial leaf surfaces. Highly significant differences were found for cultivar, location, year, cultivar × location and cultivar × year for disease severity. Calendulaceum × speciosum, `Fragrant Star', `Garden Party', `Late Lady', `Millennium', `Parade', and `Popsicle' showed no powdery mildew symptoms in both locations. Another group of plants with only minimal symptoms (<25% leaf area affected) included `Jane Abbott', `Magic', `Northern Hi-Lights' and `Snowbird'. The symptom-free cultivars exhibited glaucous foliage, suggesting a potential, common resistance mechanism. The mean scores for the abaxial and adaxial leaf surfaces were 2.34 and 1.64, respectively, although four cultivars had more disease symptoms on the adaxial surface. `Arneson Gem' showed nearly a two-point difference between abaxial and adaxial scores. Evaluations of azalea powdery mildew susceptibility should consider both leaf surfaces and use the highest score as the best estimate of host resistance.
Strawberry (`Chandler') plants were grown in a greenhouse hydroponic culture system from 28 Apr. to 20 July to produce runners (stolons) with several daughter plants. By mid-July, each `Chandler' plant had developed about 30 daughter plants on 12 runners with 1 to 6 daughter plants on each runner. Daughter plants varied in weight from <0.9 to >10 g. Daughter plant weight and position on the runner affected new root development on plug plants during the first 7 days under mist irrigation. At 3 weeks, 87% of daughter plants that weighed <0.9 g and at least 96% of daughter plants that weighed >1.0 g were rated acceptable for field transplanting, respectively. The percentage of daughter plants from second to tenth node position that were rated acceptable for field planting ranged from 98% to 88%, respectively. Runner production in the fall was not affected by either position on the runner or weight at the time of daughter plant harvest. But, larger daughter plants produced more branch crowns than did smaller daughter plants in the fall. Transplant survival in the field was 100%. In the spring, `Chandler' plants produced a 10% greater yield from daughter plants that weighed 9.9 g compared to those that weighed only 0.9 g.
Research at botanic gardens, from medieval times to the present day, has evolved to encompass a wide range of topics. The Minnesota Landscape Arboretum, part of the University of Minnesota, is an example of a diverse, successful research program within a public university garden setting. Collaboration, mission, organization, and publications are keys to a successful research program. Future research for public gardens, including putting collections to work for conservation, understanding global change, ecological genomics, restoration ecology, seed banking, and citizen science are collaborative ideas for all botanic gardens to consider. Research can strengthen the botanic garden's role by providing public value while improving ties to the university.
Black spot, incited by the fungus Diplocarpon rosae Wolf, is the most significant disease problem of landscape roses (Rosa hybrida L.) worldwide. The documented presence of pathogenic races necessitates that rose breeders screen germplasm with isolates that represent the range of D. rosae diversity for their target region. The objectives of this study were to characterize the genetic diversity of single-spore isolates from eastern North America and to examine their distribution according to geographic origin, host of origin, and race. Fifty isolates of D. rosae were collected from roses representing multiple horticultural classes in disparate locations across eastern North America and analyzed by amplified fragment length polymorphism. Considerable marker diversity among isolates was discovered, although phenetic and cladistic analyses revealed no significant clustering according to host of origin or race. Some clustering within collection locations suggested short-distance dispersal through asexual conidia. Lack of clustering resulting from geographic origin was consistent with movement of D. rosae on vegetatively propagated roses. Results suggest that field screening for black spot resistance in multiple locations may not be necessary; however, controlled inoculations with single-spore isolates representing known races is desirable as a result of the inherent limitations of field screening.
Forty-one deciduous azalea (Rhododendron subgen. Pentanthera G. Don) cultivars were assessed for powdery mildew (PM) resistance in a two-location, 3-year field trial. Disease severity (percent leaf area affected) on abaxial leaf surfaces was used to rate the level of field resistance. This measure was proportional to (r = 0.83) but higher than estimates from corresponding adaxial surfaces. Eleven of these cultivars (27%) appeared to be highly resistant under field conditions, i.e., evidence of PM on the leaves was zero or near zero. Twenty-three of the cultivars evaluated in the field experiment were also evaluated in a growth chamber experiment. In contrast to the field study, PM was more severe on the adaxial leaf surface in the growth chamber but still highly correlated with the abaxial response (r = 0.93). Based on adaxial disease scores, no cultivars in the growth chamber experiments were completely resistant. Growth chamber disease ratings based on either leaf surface were predictive of field performance (r 2 = 0.62), suggesting use of the chambers could serve as a low-cost, off-season, early selection component of a deciduous azalea PM resistance breeding program.
`Chandler' strawberry plants were propagated in tissue culture and grown from April to August in a protected environment to produce stolons. July-harvested daughter plants were stuck in cell packs with rooting media and placed under mist sprinklers, or cold stored at 2 °C for 42 days. Among the July transplants, some were kept in the greenhouse until field planting (14 Sept.) and others were moved into a cold room on 14 August. Daughter plant size and position on the stolon affected rooting and quality of transplants. July-harvested daughter plants that were plugged and misted after being cold stored for 42 days developed fewer roots than daughter plants plugged immediately after detaching from mother plants in July or August. In the field, transplants produced from daughter plants harvested in July and cold stored for 42 days developed more stolons than transplants from July- and August-harvested daughters that were not exposed to cold storage treatments. Larger daughter plants produced more branch crowns than did smaller daughter plants during the fall. All transplants from daughter plants harvested in July and propagated without cold treatment bloomed by November. Fruit production ranged from 521 to 703 g per plant. `Chandler' plants from daughter plants that weighed 10 g produced 10% greater yield than those that weighed <1.0 g. Plants generated from daughter plants plugged in July produced 26% more fruit than those plants plugged in August. Greenhouse soilless systems can be used to grow `Chandler' mother plants for generating runner tips and transplants for the annual plasticulture in colder climates. `Chandler' plants produced in July can yield a late fall crop under high tunnels and more fruit in the spring than August-plugged transplants
A diverse collection of 133 Malus species and hybrids from the USDA Plant Genetic Resources Unit's core subset collection was screened with five simple sequence repeat (SSR) primer pairs in order to determine genetic identities and overall levels of genetic variation. The number of amplification products (alleles) per locus (primer pair) in this collection ranged from 6 to 39, with some genotypes showing complex banding patterns of up to four products per locus, suggesting that duplication events may have occurred within the genome. Five primer sets unequivocally differentiated all but 10 pairs of genotypes in the collection, with seven of these 10 being pairs of the same species. Within three of the species holdings surveyed, M. honanensis, M. sargentii, and M. sikkimensis, no genetic variation was revealed with the SSR markers. The discrimination power for the combined loci in this collection was nearly one, which indicates that the likelihood of two genetically different accessions sharing the same alleles at all the loci included in this study would be nearly impossible. Coupled with results from a previous survey of M. × domestica accessions, this finding suggests that with five SSR primer pairs, the majority of the Malus holdings could be assigned a unique fingerprint identity. The average direct count heterozygosity over all loci was 0.620, ranging in value from 0.293 to 0.871 over individual loci. These heterozygosity counts will be compared with a survey of naturally occurring M. sieversii to determine whether current repository holdings are representative of the overall levels of diversity occurring in Malus. Information generated with this study, coupled with passport and horticultural data will inform curatorial decisions regarding deaccessioning of duplicate holdings and plans for future germplasm collections.
Larvae of several insects injure and kill strawberry (Fragaria ×ananassa Duchesne) plants by burrowing into and hollowing out plant crowns. Occasionally, these infestations are serious enough to cause heavy economic losses to fruit producers and nursery plant growers. In 1997 in Beltsville, Md., we observed wilting and dying mature plants and unrooted runner plants in two experimental strawberry plantings. Injury by larvae was extensive; large cavities occurred in crowns, and the central pith tissues were removed from stolons and leaf petioles. Often, insect frass was seen at entrance holes. Larvae removed from hollowed-out parts of injured plants were identified as the European corn borer (Ostrinia nubilalis Hübner) in their fifth instar stage. Their presence in this instance also was associated with a cover crop of millet [Setaria italica (L.) P. Beauv., `German Strain R'] planted between the strawberry rows for weed suppression. This is the first published report of the European corn borer attacking strawberry. Although this insect may occur only sporadically in strawberry plantings, it may become important in the future. Growers and other professionals should become aware of this new strawberry pest and recognize that its management in strawberry will be different from management of other crown-boring insects.