Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: Sarah A. White x
Clear All Modify Search

There are many water treatment technologies available to the nursery and greenhouse industry, but this sector has been somewhat hesitant to adopt them. An online survey was used to evaluate nursery and greenhouse growers’ knowledge, implementation, and continued use of 12 water treatment technologies. Less than 24% of the growers had used a water treatment technology. The knowledge level was low overall, and fewer than one in four growers had implemented all 12 technologies. However, most growers who had implemented 10 of the 12 technologies continued to use them. The results imply water treatment technologies available for this group are somewhat unknown and underused, thereby implying that there is a need to increase awareness of these innovations and highlight the opportunity for growers to advocate for treatment technology use among their peers.

Open Access

Constructed wetlands have been used for decades in agricultural settings to remediate nutrients and other agrichemicals from irrigation runoff and drainage; however, little is known about the presence and distribution of Phytophthora species within irrigation runoff water being treated in constructed wetlands. Therefore, we collected plant samples from within vegetated runoff collection channels and treatment stages of two constructed wetland systems receiving irrigation runoff at a commercial plant nursery in Cairo, GA, to determine if roots of wetland plants were infested by species of Phytophthora. Samples were collected 12 times, at 1- to 2-month intervals, over a 19-month period, from Mar. 2011 through Sept. 2012. The sample period covered all four seasons of the year, so we could determine if the association of Phytophthora species with roots of specific plant species varied with season. Approximately 340 samples from 14 wetland plant species were collected, and 22 isolates of Phytophthora species were recovered. Phytophthora species were typically isolated from plants in channels receiving runoff water directly from plant production areas; Phytophthora species were not detected on plants where water leaves the nursery. No seasonal patterns were observed in plant infestation or presence of species of Phytophthora. In fact, Phytophthora species were rarely found to be associated with the roots of the wetland plants collected; species of Phytophthora were found infesting roots of only 6.5% of the 336 plants sampled. Species of Phytophthora were not found to be associated with the roots of golden canna (Canna flaccida), lamp rush (Juncus effusus var. solutus), duckweed (Lemna valdiviana), or sedges (Carex sp.) during the study period. The exotic invasive plant species marsh dayflower [Murdannia keisak (33% of samples infested)] and alligatorweed [Alternanthera philoxeroides (15% of samples infested)] were found to have the first and third highest, respectively, incidences of infestation, with smooth beggartick (Bidens laevis) having the second highest incidence of samples infested (22%). Management of invasive species in drainage canals and constructed wetland systems may be critical because of their potential propensity toward infestation by Phytophthora species. Plant species recommended for further investigation for use in constructed wetlands to remediate irrigation runoff include golden canna, marsh pennywort (Hydrocotyle umbellata), pickerelweed (Pontederia cordata), and broadleaf cattail (Typha latifolia). The results from this study provide an important first look at the associations between species of Phytophthora and wetland plants in constructed wetland systems treating irrigation runoff and will serve to further optimize the design of constructed wetlands and other vegetation-based treatment technologies for the removal of plant pathogens from irrigation runoff.

Open Access

The nursery industry produces and sells plants for landscape and environmental purposes and represents a major sector within the US agricultural industry. In recent years, the nursery industry has undergone rapid growth as a result of various factors, including increased demand from housing development and pandemic-fueled interest in home horticulture. As with any industry, the nursery industry must adapt to changes in societal trends to sustain growth. In the wake of unprecedented societal and supply chain issues stemming from the global coronavirus disease 2019 pandemic, the American Society for Horticultural Science Nursery Crops Professional Interest Group gathered experts in various disciplines to provide their opinions and insights into the future of the nursery industry, focusing specifically on the changes and challenges the nursery industry will face in the coming decade. Nursery crop specialists spanning the United States identified three primary areas that will steer the future momentum of the nursery industry: consumer trends, natural resources, and labor. Six experts were selected to represent these areas in a workshop held Jul 2022 at the American Society for Horticultural Science Annual Conference in Chicago, IL, USA. This article was developed to disseminate to the greater scientific community the discussions held and insight shared during that workshop.

Open Access

Floating treatment wetlands (FTWs), a modified constructed wetland technology, can be deployed in ponds for the treatment of nursery and greenhouse irrigation runoff. The pH of nursery and greenhouse operation irrigation water varies from 3.3 to 10.4 across the United States. Water flow rate, plant species selection, and variable nutrient inputs influence the remediation efficacy of FTWs and may interact with the pH of inflow water to change nutrient remediation dynamics. Therefore, an experiment was designed to quantify the effect of pH on the growth and nutrient uptake capacity of three macrophyte species using a mesocosm FTW system. ‘Rising Sun’ japanese iris (Iris ensata), bushy bluestem (Andropogon glomeratus), and maidencane (Panicum hemitomon) were grown for two 6-week periods and exposed to five pH treatment levels representing the range of nursery and greenhouse irrigation runoff, 4.5, 5.5, 6.5, 7.2, and 8.5, for a total of 15 plant and pH combinations. Water was treated with either hydrochloric acid to decrease the pH or sodium hydroxide to increase the pH. The pH-adjusted solutions were mixed with 12 mg·L−1 nitrogen (N) and 6 mg·L−1 phosphorus (P) fertilizer (64.8 g·m−3 N and 32.4 g·m−3 P). Differences in pH impacted both N and P removal from the FTW systems for two of the three species studied, maidencane and bushy bluestem. Higher pH treatments reduced nutrient removal efficacy, but plants were still capable of consistently removing nutrients across all pH treatments. Conversely, ‘Rising Sun’ japanese iris maintained similar remediation efficacies and removal rates across all pH treatments for both N and P, possibly due to the ability to acidify its rhizosphere and modify the pH of the system. Average N and P loads were reduced by 47.3 g·m−3 N (70%) and 16.6 g·m−3 P (56%). ‘Rising Sun’ japanese iris is a promising plant for use in highly variable conditions when the pH of irrigation runoff is outside the typical range (5.5–7.5). Results from model simulations poorly predict the nutrient availability of P and ammonium in effluent, most likely due to the inability to determine plant and biological contributions to the system, such as N-fixing bacteria.

Open Access

Commercial nurseries use large amounts of water and nutrients during production cycles. Runoff contaminated with N and P can adversely impact surface and groundwater quality. A 3-year monitoring study of nutrient mitigation by a constructed wetland at a container nursery found nitrogen removal was highly efficient. However, orthophosphate-P removal was highly variable. Partial removal occurred during some months, but net export also occurred. P levels in wetland discharge—between 0.84 and 2.75 ppm—were well above the generally accepted level for preventing downstream eutrophication. Therefore, identifying landscape plants that remediate nutrients, especially P, could be useful in improving constructed wetlands. A 2003 greenhouse study screened commercially available landscape plants for their phytoremediation potential. Among the 17 taxa and 19 cultivars examined were woody shrubs, e.g., Cornusamomum, Myricacerifera`Emperor', and Salix integra `Hakura Nishiki'; herbaceous semiaquatics, e.g., Canna(two cultivars), Colocasia esculenta `Illustris', Rhyncospora colorata, Iris`Full Eclipse', Pontederia cordata `Singapore Pink', and Thalia geniculata `Red Stem'; and floating aquatics, e.g., Myriophyllum aquaticum, Eichhornia crassipes, and Pistia stratiotes. Plants were grown in pea gravel media and kept saturated with one of five concentrations of Hoagland's. Herbaceous and woody plants were harvested after 8 and 13 weeks, respectively. Experiments were replicated twice for each cultivar. The nutrient uptake efficiency was determined for each taxon from the total amount of N and P applied and the biomass dry weight and N and P content.

Free access

In 2014, the Southern Nursery Integrated Pest Management (SNIPM) Working Group published both print and electronic versions of IPM for Shrubs in Southeastern U.S. Nursery Production: Volume I. Five hundred print books (of 3000 copies) were distributed to commercial ornamental growers and extension educators in return for their participation in a follow-up survey. The survey was administered to determine the value of book contents, savings that growers realized from using the book, perceived value of the book had users been asked to pay for it, and demographic information. The survey response rate was 46.2%, with respondents from 18 states. Of 243 respondents, 194 (79.8%) had used the book. Entomology information was most used and most useful, followed by plant pathology, weed science, and cultural information. Collective savings attributed to book use totaled $408,832/year for the 194 nurseries that used the book. Applying the use rate (79.8%) identified in this survey, this represents $5.62 million in savings per year for the 3000 printed books, of which 2394 are estimated to have been used. Savings varied by the type and size of operation. Larger operations had greater savings per year. Container growers saved $44.15/acre and field growers $28.37/acre. The price that growers were willing to pay for the book also varied by operation type and size. Extension educators and growers were willing to pay an average of $41.20, with an additional $0.063/acre for container growers and $0.126/acre for field growers. Return on investment for the U.S. Department of Agriculture grant funding for the project was $187.60 per dollar of funding. This survey demonstrates that collaborative efforts can produce high-value deliverables with significant regional and/or national impact.

Full access

With increased mobile device usage, mobile applications (apps) are emerging as an extension medium, well suited to “place-less” knowledge transfer. Conceptualizing, designing, and developing an app can be a daunting process. This article summarizes the considerations and steps that must be taken to successfully develop an app and is based on the authors’ experience developing two horticulture apps, IPMPro and IPMLite. These apps provide information for major pests and plant care tasks and prompt users to take action on time-sensitive tasks with push notifications scheduled specifically for their location. Topics such as selecting between a web app and a native app, choosing the platform(s) for native apps, and designing the user interface are covered. Whether to charge to download the app or have free access, and navigating the intra- and interinstitutional agreements and programming contract are also discussed. Lastly, the nonprogramming costs such as creating, editing, and uploading content, as well as ongoing app management and updates are discussed.

Full access

Mobile device applications (apps) have the potential to become a mainstream delivery method, providing services, information, and tools to extension clientele. Testing, promoting, and launching an app are key components supporting the successful development of this new technology. This article summarizes the considerations and steps that must be taken to successfully test, promote, and launch an app and is based on the authors’ experience developing two horticulture apps, IPMPro and IPMLite. These apps provide information for major pests and plant care tasks and prompt users to take action on time-sensitive tasks with push notifications scheduled specifically for their location. App testing and evaluation is a continual process. Effective tactics for app testing and evaluation include garnering focus group input throughout app development and postlaunch, in-house testing with simulators, beta testing and the advantages of services that enhance information gained during beta testing, and postlaunch evaluations. Differences in promotional and bulk purchasing options available among the two main device platforms, Android and iOS, are explored as are general preparations for marketing the launch of a new app. Finally, navigating the app submission process is discussed. Creating an app is an involved process, but one that can be rewarding and lead to a unique portal for extension clientele to access information, assistance, and tools.

Full access

Extension and research professionals in the southeastern United States formed the Southern Nursery Integrated Pest Management working group (SNIPM) to foster collaboration and leverage resources, thereby enhancing extension programming, increasing opportunity, and expanding the delivery of specialized expertise to nursery crop growers across a region. Building a productive and lasting working group requires attracting a group of research and extension faculty with complementary expertise, listening to stakeholders, and translating stakeholder needs into grant priorities to help solve problems, all hallmarks of effective teamwork principles. SNIPM has now grown to include 10 U.S. states and 11 institutions and has been awarded seven grants totaling $190,994 since 2009. A striking benefit of working group membership was observed over time: synergy. Greater awareness of individual expertise among SNIPM members, each of whom were focused on different aspects of the nursery production system stimulated multistate extension publications, electronic books (eBooks), mobile device applications (apps), popular press articles, and spin-off research projects when separate foci were combined and directed toward complex challenges. Deliverables achieved from this faculty collaboration include nine peer-reviewed publications, four manuals and books and 23 book chapters, and a combined total of 11 abstracts, conference proceedings and extension publications. To date, the return on investment for SNIPM is one deliverable produced to every $2265.89 in grant funding. SNIPM has also been honored with multiple American Society for Horticultural Science publication awards as well as the Southern Region Integrated Pest Management Center Bright Idea Award for the quality and originality of their project outputs. Continuing to work together toward common goals that bridge technology and serve the nursery industry while supporting each individual member’s program will be crucial to the long-term success of this working group.

Full access