Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: Samuel F. Hutton x
Clear All Modify Search

Fusarium wilt of tomato (Solanum lycopersicum), caused by fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol), is one of the most important diseases in tomato production. Three races of the pathogen are described, and race-specific resistance genes have been applied in commercial tomato cultivars for controlling the disease. Race 3 (Fol3) threatens tomato production in many regions around the world, and novel resistance resources could expand the diversity and durability of Fol resistance. The wild tomato species, Solanum pennellii, is reported to harbor broad resistance to Fol and was the source of two known Fol3 resistance genes. In this study, we evaluated 42 S. pennellii accessions for resistance to each fusarium wilt race. F1 plants, developed from crossing each accession with the Fol3 susceptible line ‘Suncoast’, were evaluated for Fol3 resistance, and BC1F1 plants were screened to determine the likelihood that Fol3 resistance was based on a novel locus (loci). Nearly all accessions showed resistance to Fol3, and many accessions were resistant to all races. Evaluation of F1 plants indicated a dominant resistance effect to Fol3 from most accessions. Genetic analysis indicated 24 accessions are expected to contain one or more novel Fol3 resistance loci other than an allele near the I-3 locus. To investigate genetic structure of the S. pennellii accessions used in this study, we genotyped all 42 accessions using genotyping by sequencing. Approximately 20% of the single nucleotide polymorphism (SNP) loci were heterozygous across accessions, likely due to the outcrossing nature of the species. Genetic structure analysis at 49,120 unique SNP loci across accessions identified small but obvious genetic differentiations.

Open Access

Tomato (Solanum lycopersicum) is an important vegetable crop and a valuable source of nutrients for the human diet. The southeast is the main fresh market tomato producer of the United States, with much of the production concentrated in Florida. However, production in this region is threatened by plant diseases such as target spot of tomato (TS) caused by Corynespora cassiicola, a multitrophic fungus widely distributed in tropical and subtropical areas. TS can infect foliage and fruit, often resulting in significant yield losses in conductive environments. There are no known TS-resistant cultivars, and control relies entirely on fungicidal sprays. However, several studies have demonstrated that the fungus is developing resistance to commonly used fungicides which further complicates disease management. The objective of this work was to identify sources of resistance to TS from wild Solanum accessions. Initial screens of 83 accessions informed the selection of 24 accessions for a more robust screening in which six diverse C. cassiicola isolates were used for single-isolate inoculation experiments. The results from a broad-sense mixed-model analysis including data from all six experiments demonstrated that all 24 accessions had significantly lower disease severities compared with the susceptible controls, suggesting that all accessions potentially harbor resistance quantitative trait loci (QTLs). Solanum cheesmaniae accession LA0524, S. galapagense accessions LA0483 and LA0532, and S. pimpinellifolium accession LA2093 were among the most resistant accessions tested and may be particularly useful for introgression of resistance into cultivated germplasm and for mapping of TS resistance QTLs.

Open Access