Search Results
Greenhouse experiments were conducted in 2005 and 2006 near Live Oak, FL, to develop fertilization programs for fresh-cut ‘Nufar’ basil (Ocimum basilicum) and spearmint (Mentha spicata) in troughs with soilless media using inputs compliant with the U.S. Department of Agriculture's National Organic Program (NOP). Four NOP-compliant fertilizer treatments were evaluated in comparison with a conventional control. Treatments and their analyses in nitrogen (N), phosphorus (P), and potassium (K) contents are as follows: conventional hydroponic nutrient solution [HNS (150 ppm N, 50 ppm P, and 200 ppm K)], granular poultry (GP) litter (4N–0.9P–2.5K), granular composite [GC (4N–0.9P–3.3K)], granular meal [GM (8N–2.2P–4.1K)], and GM plus a sidedress application of 5N–0.9P–1.7K fish emulsion (GM + FE). Electrical conductivity (EC) of the media, fresh petiole sap nitrate (NO3-N) and K concentrations, dried whole leaf NO3-N, P, and K concentrations, and yield and postharvest quality of harvested herbs were evaluated in response to the treatments. Basil yield was similar with HNS (340 g/plant) and GP (325 g/plant) in 2005 and greatest with HNS (417 g/plant) in 2006. Spearmint yield was similar with all treatments in 2005. In 2006, spearmint yields were similar with the HNS and GP yields (172 and 189 g/plant, respectively) and greater than the yields with the remaining treatments. In both years and crops, media EC values were generally greater with the GC than with the GP, GM, and GM + FE treatments but not in all cases and ranged from 1.77 to 0.55 dS·m−1 during the experiments. Furthermore, HNS media EC values were consistently equal to or lower than the GP media EC values except with EC measurements on 106 days after transplanting in both crops in 2005. Petiole NO3-N and K results were variable among crops and years, but provided valuable insight into the EC and yield data. We expected EC, petiole NO3-N, and petiole K to be consistently higher with HNS than with organic treatments, but they were not, indicating a reasonable synchrony of nutrient availability and crop demand among the organic treatments. The postharvest quality of both basil and spearmint was excellent with all treatments with few exceptions.
`Chandler' strawberries (Fragaria ×ananassa Duch.) harvested three-quarter colored or fully red were stored in air or a controlled atmosphere (CA) of 5% O2 + 15% CO2 at 4 or 10 °C to evaluate the influence of fruit maturity and storage temperature on the response to CA. Quality evaluations were made after 1 and 2 weeks in air or CA, and also after 1 and 2 weeks in air or CA plus 1 day in air at 20 °C. By 2 weeks, strawberries of both maturities stored in air at 10 °C were decayed, however, strawberries stored in CA at 4 or 10 °C or air at 4 °C had no decay even after 2 weeks plus 1 day at 20 °C. Three-quarter colored fruit stored in either air or CA remained firmer, lighter (higher L* value) and purer red (higher hue and chroma values) than fully red fruit, with the most pronounced effect being on CA-stored fruit at 4 °C. CA was more effective than air storage in maintaining initial anthocyanin and soluble solids contents (SSC) of three-quarter colored fruit and fruit stored at 10 °C. Strawberries harvested three-quarter colored maintained initial hue and chroma values for 2 weeks in CA at 4 °C, becoming fully red only when transferred to air at 20 °C. Although three-quarter colored fruit darkened and softened in 10 °C storage, the CA-stored fruit remained lighter colored and as firm as the at-harvest values of fully red fruit. After 1 or 2 weeks in CA at either 4 or 10 °C plus 1 day at 20 °C, three-quarter colored fruit also had similar SSC levels but lower total anthocyanin contents than the initial levels in fully red fruit. CA maintained better strawberry quality than air storage even at an above optimum storage temperature of 10 °C, but CA was more effective at the lower temperature of 4 °C. Three-quarter colored fruit responded better to CA than fully red fruit, maintaining better appearance, firmness, and color over 2 weeks storage, while achieving similar acidity and SSC with minimal decay development.