Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: S. Arulsekar x
Clear All Modify Search

The genetic relationships among peach [Prunus persica (L.) Batsch], almond [P. dulcis (Mill.) D.A. Webb or P. amygdalus (L.) Batsch] and 10 related Prunus species within the subgenus Amygdalus were investigated using simple sequence repeat (SSR) markers. P. glandulosa Pall. was included as an outgroup. Polymorphic alleles were scored as present or absent for each accession. The number of alleles revealed by the SSR analysis in peach and almond cultivars ranged from one to three whereas related Prunus species showed a range of one to 10 alleles. Results demonstrated an extensive genetic variability within this readily intercrossed germplasm as well as the value of SSR markers developed in one species of Prunus for the characterization of related species. Mean character difference distances were calculated for all pairwise comparisons and were used to construct an unrooted dendogram depicting the phenetic relationships among species. Four main groups were distinguished. Peach cultivars clustered with accessions of P. davidiana (Carr.) Franch. and P. mira Koehne. The second group contained almond cultivars. A third group included accessions of P. argentea (Lam) Rehd., P. bucharica Korschinsky, P. kuramica Korschinsky, P. pedunculata Pall, P. petunikowii Lits., P. tangutica (Spach) Batal., and P. webbii (Spach) Vieh.. P. glandulosa and P. scoparia Batal. were included in a fourth group.

Free access

Almond [Prunus dulcis (Mill.) D.A. Webb, syn. P. amygdalus, Batsch; P. communis (I.) Archangeli] represents a morphologically and physiologically variable group of populations that evolved primarily in central and southwest Asia. California cultivars have been developed from highly selected subgroups of these populations, while new breeding lines have incorporated germplasm from wild almond and closely related peach species. The genetic relatedness among 17 almond genotypes and 1 peach genotype was estimated using 37 RAPD markers. Genetic diversity within almond was found to be limited despite its need for obligate outcrossing. Three groupings of cultivar origins could be distinguished by RAPD analysis: bud-sport mutations, progeny from interbreeding of early California genotypes, and progeny from crosses to genotypes outside the California germplasm. A similarity index based on the proportion of shared fragments showed relatively high levels of 0.75 or greater within the almond germplasm. The level of similarity between almond and the peach was 0.424 supporting the value of peach germplasm to future almond genetic improvement.

Free access

Randomly amplified polymorphic DNA (RAPD) markers were generated for identifying grape (Vitis) rootstocks. Seventy-seven primers (10 bases long) were screened using CsCl-purified leaf DNA derived from several field samples of nine rootstocks sampled in successive years. Nine RAPD markers were detected from six primers and, in combination, distinguished all nine rootstocks tested. Because inconsistencies were encountered in performing the RAPD assay, sequence-specific primers were derived from cloned RAPD bands for use under more stringent amplification conditions. Southern hybridization analysis of the RAPD gels with cloned RAPD bands as probes revealed deficiencies of scoring RAPD bands based solely on ethidium bromide staining. In some cases, bands of the same size generated by the same primer in different rootstocks-normally scored as the same marker-failed to cross-hybridize, implying lack of homology between the bands. More commonly, bands scored as absent based on ethidium bromide staining were detected by hybridization. Six of the nine cloned RAPD bands were partially sequenced, and sequence-specific primer pairs were synthesized. Two primer pairs amplified a product the same size as the original RAPD band in all rootstocks, resulting in loss of polymorphism. Two other pairs of sequence-specific primers derived from the same marker failed to amplify the expected band consistently. Three of the most useful primer pairs amplified apparent length variants in some accessions and will have value as polymerase chain-reaction markers for fingerprinting.

Free access

Abstract

Horizontal starch gel electrophoresis was used to study the variation of aspartate aminotransferase (AAT-1), glucose phosphate isomerase (GPI-2), leucine aminopeptidase (LAP-1) and phosphoglucomutase (PGM-1 and PGM-2) isozymes in 76 cultivars and accessions of almond. Cultivars could be separated into 40 classes for identification. Relationships among cultivars, based on historical records and isozyme similarities, show an original pool of seedling selections made before 1900. Most later-introduced cultivars are offspring or descendents of ‘Nonpareil’ and ‘Mission’ (‘Texas Prolific’), the other dominant parent.

Open Access

Abstract

Intergeneric hybrids between wingnut (Pterocarya sp.) and walnut (Juglans regia) were developed by regenerating plants from somatic embryos produced on immature cotyledons of seed from control-pollinations. Hybridization was confirmed by isozyme analysis using starch gel electrophoresis. To the best of our knowledge, this is the first report of hybrids between wingnut, which has a high level of resistance to Phytophthora spp. and nematodes, and walnut. Wingnut may now be used as a source of germplasm for improving walnut rootstocks.

Open Access