Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Russell T. Nagata x
Clear All Modify Search

Glyphosate-resistant plants of `South Bay' lettuce (Lactuca sativa L.) were produced by using Agrobacterium tumefaciens containing a plasmid carrying glyphosate oxidase and EPSPS gene. An in vitro assay was performed to determine the sensitivity of `South Bay' leaf discs and seedling explants to varying glyphosate concentrations. The I50 for glyphosate leaf discs was 53.8 μm and for glyphosate seedlings 7.6 μm. There was a high correlation between the response of leaf discs and seedlings to glyphosate based on dry weight. These findings will allow identification of glyphosate-resistant transformants in an early stage of plant development, saving time and reducing the cost in generating an improved cultivar with the glyphosate resistance trait.

Free access

Six transgenic `South Bay' lettuce lines (Lactuca sativa L.) with elevated levels of 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) were evaluated for tolerance to the herbicide glyphosate. The six lines were selected from ≈150 independent transformation events using an Agrobacterium tumefaciens system. Three assay methods were used to identify gene expression with regard to glyphosate resistance. Leaf disks of the transgenic lines were cultured on media containing 0 to 1280 μm glyphosate. Leaf disks of the control had lower dry weight (DW) at 40 μm and greater glyphosate than all the transgenic lines. The transgenic lines continued to grow even at 1280 μm. Plants 21 days old were sprayed in the greenhouse with rates of glyphosate at 0 to 35.84 kg·ha-1. DW of all the lines were similar to the control, with a few exceptions, at glyphosate concentrations from 0 to 0.56 kg·ha-1. At 2.24 to 8.96 kg·ha-1 all of the transgenic lines had DW greater than the control, while at 17.92 and 35.84 kg·ha-1 only B-32, B-33, C-3, and C-14 had DW greater than the control. The resistant line from the greenhouse experiment, B-32, grew normally in field trials at the highest glyphosate rate, 17.92 kg·ha-1, while control plants died at 0.56 kg·ha-1 glyphosate. Lines A-11 and C-3 had lower DW than B-32 at 2.24 kg·ha-1 glyphosate and greater. While leaf disk assays can identify potential transformed lines expressing the EPSPS and glyphosate oxidase (GOX) gene, and greenhouse screening can evaluate seedling vigor after glyphosate application, field trials are necessary to evaluate plant growth and yield through the growing season. Chemical name used: N-(phosphono-methyl) glycine (glyphosate).

Free access

Ethylene synthesis and sensitivity, and their relation to germination at supraoptimal temperatures, were investigated in lettuce (Lactuca sativa L.) seeds matured at 30/20 °C [12-h day/night, high temperature matured (HTM)] or 20/10 °C [12-h day/night, low temperature matured (LTM)]. HTM seeds of both thermosensitive `Dark Green Boston' (DGB) and thermotolerant `Everglades' (EVE) had greater germination at a supraoptimal temperature (36 °C), in both light or dark, than LTM seeds of DGB and EVE. HTM seeds of DGB and EVE produced more ethylene during germination than LTM seeds, regardless of imbibition conditions. The ethylene action inhibitor, silver thiosulfate, led to reduced germination in both cultivars. The ethylene precursor, 1-aminocyclopropane-1-carboxylic acid at 10 mm increased germination of both cultivars at supraoptimal temperatures, whereas germination of HTM seeds was greater than that of LTM seeds. No differences in ethylene perception were detected between HTM and LTM germinating seeds using a triple response bioassay. This study demonstrated that at least one method through which seed maturation temperature influences lettuce germination is by affecting ethylene production.

Free access


‘Champion’, ‘Georgia’, ‘Heavicrop’, and ‘Vates’ collards (Brassica oleracea L. var acephala) were planted in Fletcher and Lewiston, N.C.; Charleston, Clemson, and Florence, S.C.; and Attapulgus and Plains, Ga. to determine the most reliable method to predict harvest maturity based on temperature. Although cultivar differences existed within some of the planting dates, when pooled over all planting dates, cultivars yielded similarly within locations. Eight methods of calculating heat units from planting to harvest were applied to daily maximum and minimum air temperatures supplied from local weather bureaus for the spring and fall growing seasons from 1985 through 1987 in the three-state area. Coefficients of variation were used to determine which method was most reliable in predicting day of first harvest. The method with the lowest cv was to sum, over days for planting to harvest, the difference between the daily maximum and a base temperature of 13.4C; however, if the maximum was >23.9C, the base temperature was subtracted from an adjusted maximum equal to 23.9C minus the difference between the maximum and 23.9C. This method produced a cv of 9.1% compared to 11.4% for the standard method of summing the mean temperature minus the base of 4.4C over the entire growing season, or compared to 13.4% for counting days to harvest from planting.

Open Access