Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: Rong Zhang x
Clear All Modify Search

The relationship between soil texture and the degree of apple replant disease (ARD) was analyzed from the perspective of the microbial community structure and diversity within the rhizosphere soil of Malus hupehensis Rehd. seedlings. Three different textured soils were taken from different apple orchards in Laizhou, Yantai. The soils were divided into two parts, one was kept in replanted conditions, and the other was fumigated with methyl bromide to act as a high standard control. The strength of ARD occurrence was examined by measuring fresh and dry weight suppression (%) of the M. hupehensis seedlings. Differences in the fungal community structure (especially in Fusarium) among the three soil texture types were analyzed using high-throughput sequencing. The results showed that replanted loam clay soil had the highest fungal diversity, followed by sandy loam soil and finally loam soil. The richness of fungi between soil textures, however, was not significantly different. At the genus level, the relative abundance of Fusarium was 1.96%, 0.78%, and 10.89% in replanted sandy loam, replanted loam soil, and replanted loam clay soil, respectively. Moreover, the gene copy number of Fusarium oxysporum, Fusarium solani, and the inhibition rate of fresh weight of M. hupehensis seedlings were the same in the three soil textures. The plant height, photosynthesis (net) (Pn), and stomatal conductance (g S) of the M. hupehensis seedlings were significantly less in the replanted soil compared with the control treatments, with the overall difference being greatest in replanted loam clay soil, followed by replanted sandy loam and then replanted loam soil.

Open Access

Kiwifruit (Actinidia deliciosa) is a typical climacteric fruit, and its ripening is closely associated with ethylene. In this study, we present evidence that H2S alleviated ethylene-induced ripening and senescence of kiwifruit. Kiwifruit were fumigated with ethylene released from 0.4 g·L−1 ethephon solution or H2S with 1 mm sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate kiwifruit ripening and H2S treatment effectively alleviated ethylene-induced fruit softening in parallel with attenuated activity of polygalacturonase (PG) and amylase. Ethylene + H2S treatment also maintained higher levels of ascorbic acid, titratable acid, starch, soluble protein, and reducing sugar compared with ethylene group, whereas suppressed the increase in chlorophyll and carotenoid. Kiwifruit ripening and senescence under ethylene treatment was accompanied by elevation in reactive oxygen species (ROS) levels, including H2O2 and superoxide anion and malondialdehyde (MDA), but combined treatment of ethylene plus H2S alleviated oxidative stress in fruit. Furthermore, the activities of antioxidative enzymes catalase (CAT) and ascorbate peroxidase (APX) were increased by ethylene + H2S treatment in comparison with ethylene alone, whereas the activities of lipoxygenase (LOX) and polyphenol oxidase (PPO) were attenuated by H2S treatment. Further investigations showed that H2S repressed the expression of ethylene synthesis-related genes AdSAM, AdACS1, AdACS2, AdACO2, and AdACO3 and cysteine protease genes, such as AdCP1 and AdCP3. Taken together, our findings suggest that H2S alleviates kiwifruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene synthesis pathway.

Free access

Chinese cymbidiums are important flowering ornamental plants. Traditional propagation via seed or division cannot satisfy growers’ demand for commercialization of new cultivars, and in vitro propagation has a low micropropagation efficiency due to the browning of rhizomes. In this study, rhizomes of Cymbidium ‘14-16-13’ and ‘14-16-5’ were cultured on half-strength Murashige and Skoog (MS) medium supplemented with 6-benzyl aminopurine (BAP), NAA (α-napthaleneacetic acid), or BAP with NAA under either the dark or light. The degree of browning was read, and rhizome proliferation or sprouting (sprout numbers) was evaluated. Results showed that there was significant difference in browning grade of rhizomes between ‘14-16-13’ and ‘14-16-5’ regardless of dark and light culture. Dark culture induced rhizome proliferation but failed to induce sprouts. Light culture slightly elevated the degree of browning but induced sprouting. Among the growth regulators evaluated, BAP was more effective for sprout induction. As rhizome browning appeared to be inevitable in micropropagation of the cymbidiums, a compromise between browning and sprout production could be a realistic approach. Our study showed that rhizomes cultured on half-strength MS medium supplemented with 1.5 mg·L−1 BAP were able to produce more than 16 sprouts per vessel even though browning occurred in the rhizomes. Thus, culturing rhizomes in this medium could be a practical solution for in vitro propagation of Chinese cymbidiums.

Open Access

Cytosine methylation plays important roles in regulating gene expression and modulating agronomic traits. In this study, the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique was used to study variation in cytosine methylation among seven pecan (Carya illinoinensis) cultivars at four developmental stages. In addition, phenotypic variations in the leaves of these seven cultivars were investigated. Using eight primer sets, 22,796 bands and 950 sites were detected in the pecan cultivars at four stages. Variation in cytosine methylation was observed among the pecan cultivars, with total methylation levels ranging from 51.18% to 56.58% and polymorphism rates of 82.29%, 81.73%, 78.64%, and 79.09% being recorded at the four stages. Sufficiently accompanying the polymorphism data, significant differences in phenotypic traits were also observed among the pecan cultivars, suggesting that cytosine methylation may be an important factor underlying phenotypic variation. Hypermethylation was the dominant type of methylation among the four types observed, and full methylation occurred at higher levels than did hemimethylation in the pecan genomes. Cluster analysis and principal coordinate analysis (PCoA) identified Dice coefficients ranging from 0.698 to 0.778, with an average coefficient of 0.735, and the variance contribution rates of the previous three principal coordinates were 19.6%, 19.0%, and 18.2%, respectively. Among the seven pecan cultivars, four groups were clearly classified based on a Dice coefficient of 0.75 and the previous three principal coordinates. Tracing dynamic changes in methylation status across stages revealed that methylation patterns changed at a larger proportion of CCGG sites from the 30% of final fruit-size (30%-FFS) stage to the 70%-FFS stage, with general decreases in the total methylation level, the rate of polymorphism, and specific sites being observed in each cultivar. These results demonstrated that the F-MSAP technique is a powerful tool for quantitatively detecting cytosine methylation in pecan genomes and provide a new perspective for studying many important life processes in pecan.

Free access

Scion wood of ‘Caddo’ and ‘Desirable’ pecan (Carya illinoinensis) was grafted onto the epicotyl of 1-month-old, open-pollinated ‘Shaoxing’ pecan seedlings for evaluation as a grafting technique to reduce the time to produce grafted trees. The results showed that seedlings grafted with “base scions” had higher survival than those grafted with “terminal scions” for both ‘Caddo’ and ‘Desirable’. Also, grafting with paraffinic tape could achieve greater success rate than that with medical tape. The most ideal time to perform this grafting was late April in Nanjing, China, when pecan seedlings were about 35 days old. This study demonstrated that the technique yielded successful epicotyl grafting of >70%, and it could thus be applied in practice.

Full access