Search Results

You are looking at 11 - 20 of 42 items for

  • Author or Editor: Paul R. Fisher x
Clear All Modify Search

The objective was to develop indices to describe reactivity of different lime particle size fractions with respect to pH change in horticultural substrates. Particle size efficiency (PSE) was calibrated from pH responses for separated six lime particle size fractions (>850, 850 to 250, 250 to 150, 150 to 75, 75 to 45, and <45 μm) from three calcitic limes, and seven dolomitic limes, based on their increase in substrate pH relative to reagent grade CaCO3 when mixed in a sphagnum peat substrate at 5 g CaCO3 equivalents per liter of peat. The fineness factor (FF) was calculated for a liming material by summing the percentages by weight in each of the six size fractions multiplied by the appropriate PSE. The effective calcium carbonate equivalence (ECC) of a limestone was the product of the FF and the acid neutralizing value (NV) in CaCO3 equivalents. Reliability of the parameters for FF and ECC were then validated in two experiments, using 29 unscreened carbonate and hydrated lime sources, including the 10 calibration limes. In one experiment, 1 L of peat was blended at 5 g of lime (i.e., not corrected for differences in NV between limes). In the second experiment, 5 g CaCO3 equivalents for each lime, corrected for NV, were blended with 1 L of peat (a different peat source), using the same 29 lime sources. Both FF and ECC were positively correlated with the corresponding substrate-pH changes, with P < 0.001 and r 2 from 0.87 to 0.93. This calibration of PSE, FF, and ECC can improve limestone selection and application rate for the short term response and fine limestone sources used in horticulture.

Free access

Limestone is incorporated into horticultural substrates to neutralize substrate acidity, increase pH buffering capacity, and provide calcium and magnesium. Limestones differ in their rate of pH change, equilibrium pH, and proportion of unreacted “residual”? lime. In horticulture, lime reactivity is currently measured empirically in batch tests, whereby limestone is incorporated into a batch of substrate and pH change is measured over time. Our objective was to develop a quantitative model to describe reaction of lime over time. The lime reaction model predicts the substrate-pH based on lime acid neutralizing capacity, lime type (calcitic, dolomitic, or hydrated), lime particle size distribution, application concentration, and the non-limed pH and neutralizing requirement (buffering) of the substrate. Residual lime is calculated as the proportion of lime remaining following gradual neutralization of the substrate acidity (by subtraction of reacted lime from total applied lime).

Free access

Lime sources vary in their reactivity depending on particle size, surface area and crystalline structure, and chemical composition. Current horticultural practice for testing lime reactivity and the appropriate lime rate is through batch trials where lime is incorporated into growing media. Our objective was to test a laboratory approach that would provide a rapid analytical test on reactivity of lime sources, and could eventually be applied to measuring unreacted (residual) lime in container media. Four moles HCl was added to a lime sample, and the volume of CO2 released over time was measured in a burette. Three lime types were tested, including reagent grade CaCO3, and two pulverized dolomitic limestones used in horticultural media. 100% of CaCO3 reacted in less than a minute after acid addition, whereas only 79.8% and 49.5% of the two commercial lime samples had reacted after 10 minutes. The time required for 50% of the two commercial lime samples to react was 5 and 10 minutes, respectively, whereas it took 20 and 60 minutes, respectively, for 95% neutralization. Reaction rates in the laboratory test correlated with the time required to achieve a stable pH level when limes were incorporated into a peat substrate. The reagent-grade CaCO3 raised pH more rapidly (within 7 days) and to a higher level (maximum pH 7.5 at 9 g of lime per liter of peat) compared with the dolomitic lime sources. It may be possible to establish a lime reactivity index, for example, based on CO2 release after 10 minutes, and thereby provide a rapid screening of limes. Further gasometric analysis of lime types used in horticultural substrates is therefore needed.

Free access

The objective of this study was to develop reactivity indices to describe the pH response for liming materials incorporated into container substrates. Three reactivity indices [particle size efficiency (PSE), fineness factor (FF), and effective calcium carbonate equivalence (ECC)] were developed based on lime particle size distribution and lime neutralizing value (NV) in CaCO3 equivalent. Six lime particle size fractions (2000 to 850, 850 to 250, 250 to 150, 150 to 75, 75 to 45, and <45 μm) separated from each of three calcitic limes and seven dolomitic limes were used to calibrate PSE, and were based on the increase in substrate pH (ΔpH) incited by the particle size fraction relative to reagent grade CaCO3 when mixed in a sphagnum peat substrate at 5 g CaCO3 equivalents per liter of peat. PSE for calcitic carbonate limes at day 7 (short-term pH response) were 0.13, 0.40, 0.78, 0.97, 1.00, and 1.00 for 2000 to 850, 850 to 250, 250 to 150, 150 to 75, 75 to 45, and <45 μm particle fractions, respectively. Other PSE values were described for dolomitic carbonate limestones and for long-term pH response, and PSE was modeled with a function over time. FF was calculated for a liming material by summing the percentages by weight in each of the six size fractions multiplied by the appropriate PSE. ECC rating of a limestone was the product of its NV and FF. ECC multiplied by the applied lime incorporation rate could be used to predict substrate-pH response. Estimated PSE values were validated in two experiments that compared expected and observed substrate pH using 29 unscreened carbonate and hydrated lime sources blended with peat. Validation trials resulted in a close correlation and no bias between expected and observed pH values. Revised PSE values are useful to evaluate the reactivity of different limestone sources for container substrates given the fine particle size, short crop duration, and pH sensitivity of many container-grown crops.

Free access

Floriculture species differ in their effect on substrate-pH and the resulting substrate micronutrient availability in container production. The objective was to quantify effects of floriculture plant species on substrate-pH. In a growth chamber factorial experiment, 15 floriculture species were grown in 70%:30% by volume peat:perlite substrate and fertilized with nutrient solutions containing 100 mg·L−1 N and NH4 +-N:NO3 -N nitrogen ratios of 0:100, 20:80, or 40:60. The relationship between substrate-pH and milliequivalents (meq) of acid or base per unit volume of substrate was quantified by titration with hydrated dolomitic lime or HCl. After 33 days, species and solution type effects on substrate-pH and estimated meq of acid or base produced were evaluated. Final substrate-pH ranged from 4.83 for geranium in 40:60 solution to 6.58 for lisianthus in 0:100 solution, compared with an initial substrate-pH of 5.84. This change in substrate-pH corresponded with a net meq of acid or base produced per gram of tissue dry mass gain (NMEQ) ranging across solutions and species from 1.47 of base for lisianthus in the 0:100 solution to 2.10 of acid for coleus in the 40:60 solution. With the 0:100 solution, geranium produced the greatest NMEQ of acid (0.07), whereas lisianthus produced the greatest NMEQ of base (1.47). Because all N in the 0:100 solution was in the NO3 anion form, meq of both anions and cations taken up by plant roots could be calculated based on tissue analysis. With the 0:100 solution, species that took up more anions than cations into plant tissue tended to have a more basic effect on substrate-pH, as would be expected to maintain electroneutrality. Data were used to estimate the percent NH4 +-N of total N in a nutrient solution that would be neutral (results in no substrate-pH change) for each species. This neutral percent NH4 +-N of total N ranged from ≈0% (geranium) to 35% (pentas). Species were separated into three clusters using k-means cluster analysis with variables related to NMEQ and anion or cation uptake. Species were clustered into groups that had acidic (geranium and coleus), intermediate (dusty miller, impatiens, marigold, new guinea impatiens, petunia, salvia, snapdragon, and verbena), or basic (lisianthus, pansy, pentas, vinca, and zinnia) effects on substrate-pH. Evaluating the tendency to increase or decrease substrate-pH across a range of floriculture species, and grouping of plants with similar pH effects, could help predict NH4 +:NO3 ratios for a neutral pH effect and assist growers in managing substrate-pH for container production.

Free access

Nutrient uptake during adventitious root formation is not clearly understood, resulting in variable fertilization strategies in propagation and increased potential for nutrient deficiency or nutrient runoff. The objective was to quantify rooting response to fertility treatments and tissue nutrient concentration changes in response to basal or apical nutrient supply during three rooting phases in propagation of Petunia ×hybrida ‘Supertunia Royal Velvet’ and ‘Supertunia Priscilla’ stem tip cuttings. One of two treatments [a complete fertilizer solution (in mg·L−1) 56 NO3-N, 19 NH4-N, 13 phosphorus, 88 potassium, 39 calcium, 28 magnesium, 20 sulfur, 11 sodium, 1.1 iron, 0.5 manganese, 0.5 zinc, 0.25 copper, 0.29 boron, 0.1 molybdenum, and 0.01 aluminum] or clear tap water was applied to the cuttings. Tissue N–P–K concentrations declined as plant development increased from Stage 0 to 3 regardless of fertilizer treatment or location applied. Foliar application of N–P–K during propagation maintained tissue nutrient concentration at higher levels before Stage 2 (initial root emergence) compared with plants that received clear water only; however, overall, a decline in concentration was measured from Stage 1 to Stage 3. Measurable N–P–K uptake occurred during root development from the foliar and basal portions of the cuttings. Basal fertilizer applications resulted in increased root length and root number compared with plants treated with clear water. These results emphasize that nutrient uptake occurs from both the stem and foliar portion of Petunia cuttings, and nutrient availability at the stem base at root emergence improves root development.

Free access

Unreacted residual limestone in the container substrate is key in buffering pH change over time. Our goal was to develop a substrate test protocol to measure residual lime [in units of CaCO3 equivalent (CCE)] by applying a strong mineral acid (HCl) to a substrate sample and measuring the evolved CO2 gas with a gasometric method based on a Chittick apparatus. In one experiment, CaCO3 was added to a substrate that had previously been neutralized to pH 7.35 with Ca(OH)2 so that there would be minimal CaCO3 reaction with the substrate at this high pH. The gasometric method was then used to estimate residual CCE. Measured CCE and applied CaCO3 were similar, indicating reliable CCE estimation. In a second experiment, a pH titration method was used to quantify the relationship between substrate-pH and milliequivalents of reacted base and provided an additional validation of the estimated reacted and residual CCE. The gasometric method demonstrated declining residual CCE over time as a dolomitic limestone reacted to raise substrate-pH and increasing residual CCE as applied CaCO3 concentration increased. Residual CCE in a substrate is an important property that should be considered for pH control and management in greenhouse crop production. Our results indicate that the gasometric system may be useful for optimizing lime application rate, lime source, or management of residual CCE during crop production.

Free access

Two experiments were run to validate a “Nitrogen Calcium Carbonate Equivalence (CCE)” model that predicts potential fertilizer basicity or acidity based on nitrogen (N) form and concentration for floriculture crops grown with water-soluble fertilizer in containers with minimal leaching. In one experiment, nine bedding plant species were grown for 28 days in a peat-based substrate using one of three nutrient solutions (FS) composed of three commercially available water-soluble fertilizers that varied in ammonium to nitrate (NH4 +:NO3 ) ratio (40:60, 25:75, or 4:96) mixed with well water with 130 mg·L−1 calcium carbonate (CaCO3) alkalinity. Both the ammonium-nitrogen (NH4-N) content of the FS and plant species affected substrate pH. Predicted acidity or basicity of the FS for Impatiens walleriana Hook.f. (impatiens), Petunia ×hybrida E. Vilm. (petunia), and Pelargonium hortorum L.H. Bailey (pelargonium) from the Nitrogen CCE model was similar to observed pH change with an adjusted R 2 of 0.849. In a second experiment, water alkalinity (0 or 135.5 mg·L−1 CaCO3), NH4 +:NO3 ratio (75:25 or 3:97), and N concentration (50, 100, or 200 mg·L−1 N) in the FS were varied with impatiens. As predicted by the N CCE model, substrate pH decreased as NH4 + concentration increased and alkalinity decreased with an adjusted R 2 of 0.763. Results provide confidence in the N CCE model as a tool for fertilizer selection to maintain stable substrate pH over time. The limited scope of these experiments emphasizes the need for more research on plant species effects on substrate pH and interactions with other factors such as residual limestone and substrate components to predict pH dynamics of containerized plants over time.

Free access

The objective of this study was to quantify water volume and nutrient content leached during propagation of herbaceous cuttings in commercial greenhouses. Nutrient concentrations in the fertigation solution, substrate, tissue, and leachate were measured between Jan. and Mar. 2006 at eight greenhouse locations in Michigan, Colorado, New Hampshire, and New Jersey. Grower management of the timing and concentration of nutrients applied to vegetatively grown calibrachoa (Calibrachoa ×hybrida) or petunia (Petunia ×hybrida) liner trays varied among the eight locations, ranging from 0.5 to 80 mg·L−1 nitrogen (N) in week 1 and from 64 to 158 mg·L−1 N in week 4. Over a 4-week crop period, applied nutrients averaged 4.9 g·m−2 N, 0.8 g·m−2 phosphorus (P), and 5.8 g·m−2 potassium (K), and leached nutrients averaged 1.1 g·m−2 N, 0.3 g·m−2 P, and 1.6 g·m−2 K. Leaching of nutrients and irrigation water was highly variable among locations. Leached water volumes ranged from 4.5 to 46.1 L·m−2 over 4 weeks and contained 0.29 to 1.81 g·m−2 N, 0.11 to 0.45 g·m−2 P, and 0.76 to 2.86 g·m−2 K. The broad range in current commercial fertigation practices, including timing of nutrient supply, concentration of applied fertilizer, and leaching volume, indicate considerable potential to improve efficiency of water and fertilization resources during propagation and reduce runoff.

Full access

Our objective was to quantify the stem-elongation patterns of several Oriental and Asi-florum lily cultivars to develop graphical tracking charts where actual crop height can be compared visually against a target growth curve. Oriental lilies (`Mona Lisa' and `Stargazer') were grown in research greenhouses at Michigan State Univ. (MSU) during 1994 and 1995. Asi-florum lily cultivars (`Centurion', `LA-87', `Non-stop', `Salmon Queen', and `Salzburg') were grown at MSU in 1995. Plants received constant 20 °C from emergence to flower in 1995, and constant 15, 18, 21, 24, or 27 °C in 1994. Elongation of Oriental lily plants followed a sigmoid pattern. Oriental lily cultivars elongated rapidly after emergence until 60% of the relative time between dates of emergence and first open flower, at which time plants had achieved ≈82% (`Stargazer') or 85% (`Mona Lisa') of their final height; elongation then exhibited a plateau phase. In contrast to the Oriental lilies, Asi-florum cultivars consistently exhibited a more constant elongation rate throughout the growing period. Simplified graphical tracking curves were developed based on the patterns of elongation and were programmed into a computer decision—support system (`UNH FloraTrack'). The graphical tracking curves were tested by growing `Stargazer', `Mona Lisa', and four Asiflorum cultivars (`Donau', `Dream', `Moneymaker', `Spirit') at the Univ. of New Hampshire and MSU during 1997 to height specifications of 51 to 56 cm (including a pot height of 15 cm). Sumagic growth retardants were applied as a prebulb dip at 5 ppm and as a foliar spray at 3 ppm when plant height was above the target curve. Final height targets were achieved using this method. E-mail prf@hopper.unh.edu; phone, (603) 862-4525.

Free access