Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: Paul Dean x
Clear All Modify Search

Agricultural limestone is classified based on particle-size distribution, a key factor influencing neutralization capacity. This property is an effective basis for liming recommendations for agronomic purposes which allow for gradual rise in soil pH and residual neutralization for three years. Inconsistencies are prevalent when agricultural limestone is used for horticultural applications which require rapid attainment of target pH and residual neutralization for only four months. Variations in pH among batches of substrate produced with the same limestone rate and pH drift from the same initial pH during crop production infer that factors other than particle diameter also influence limestone neutralization capacity. In this study the relationship between specific surface and diameter of limestone particles was examined. Limestones obtained from twenty North American quarries were wet-sieved into eight particle diameter fractions from 600 to <38 μm (passing 30 through 400-mesh screens). Specific surface (m2/g) of particles was measured in three replications for each fraction following the BET theory that dinitrogen gas (N2) condenses in a continuous mono-molecular layer on all particle surfaces. At each particle diameter fraction, specific surface varied significantly (five-fold differences) among quarries. Large specific surface may indicate many reactive interfaces, hence high neutralization capacity. In containerized production, typical to horticulture, preponderance of root over substrate mass and short crop duration dictate narrower characterization of limestone than is currently used. Specific surface may describe limestone neutralization capacity more finely than does particle diameter.

Free access

Two experiments were completed to determine whether the form and concentration of iron (Fe) affected Fe toxicity in the Fe-efficient species Pelargonium ×hortorum `Ringo Deep Scarlet' L.H. Bail. grown at a horticulturally low substrate pH of 4.1 to 4.9 or Fe deficiency in the Fe-inefficient species Calibrachoa ×hybrida `Trailing White' Cerv. grown at a horticulturally high substrate pH of 6.3 to 6.9. Ferric ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA), ferric ethylenediamine tetraacetic acid (Fe-EDTA), and ferrous sulfate heptahydrate (FeSO4·7H2O) were applied at 0.0, 0.5, 1.0, 2.0, or 4.0 mg ·L–1 Fe in the nutrient solution. Pelargonium showed micronutrient toxicity symptoms with all treatments, including the zero Fe control. Contaminant sources of Fe and Mn were found in the peat/perlite medium, fungicide, and lime, which probably contributed to widespread toxicity in Pelargonium. Calibrachoa receiving 0 mg Fe/L exhibited severe Fe deficiency symptoms. Calibrachoa grown with Fe-EDDHA resulted in vigorous growth and dark green foliage, with no difference from 1 to 4 mg·L–1 Fe. Using Fe-EDTA, 4 mg Fe/L was required for acceptable growth of Calibrachoa, and all plants grown with FeSO4 were stunted and chlorotic. Use of Fe-EDDHA in water-soluble fertilizer may increase the upper acceptable limit for media pH in Fe-inefficient species. However, iron and Mn present as contaminants in peat, irrigation water, or other sources can be highly soluble at low pH. Therefore, it is important to maintain a pH above 6 for Fe-efficient species regardless of applied Fe form or concentration, in order to avoid the potential for micronutrient toxicity.

Free access

Although many factors that influence substrate pH have been quantified, the effect from fertilizers continues to be elusive. A multifactorial experiment was conducted to test macronutrient effects using a rarely used statistical method known as the central composite design. Five nutrient factors, including nitrogen (N) carrier ratio (NH4 + vs. NO3 ) and concentrations of phosphorus (P) (as H2PO4 ), potassium (K), combined calcium (Ca) and magnesium (Mg), and sulfur (S), were varied at five levels each encompassing the proportionate range of these nutrients in commercial greenhouse fertilizers. Although a typical factorial experiment would have resulted in 55 = 3125 treatments, the central composite design reduced the number to 30 fertilizer treatments. An experiment was conducted twice in which ‘Evolution White’ mealy-cup sage (Salvia farinacea Benth.) was grown in 14-cm-diameter pots (1.29 L) in a 3 peat:1 perlite (v/v) substrate amended with non-residual powdered calcium carbonate to raise the substrate pH to ≈5.6 to 5.8. Harvests occurred after 3 and 6 weeks of growth. A statistical model described substrate pH over time with significant effects including four main effects of N carrier ratio, P, K, and combined Ca and Mg; three squared terms of N carrier ratio, P, and K; and seven interaction effects. The resulting model was used to calculate substrate pH levels between 25 and 45 days after planting, and it showed that N carrier had the greatest impact on substrate pH.

Free access

The effect of ethylene on tuber sprout growth and quality in potato (Solanum tuberosum L. `Russet Burbank') was tested in laboratory and commercial studies for 6 and 3 years, respectively, in comparison with untreated (laboratory study) and CIPC-treated tubers (laboratory and commercial studies). In both studies, ethylene was applied continuously at 166 μmol·m-3 for at least 25 weeks, beginning in early December (laboratory study) or early December to early January (commercial study). In the laboratory study, ethylene delayed the appearance of sprouts for 5 to 15 weeks, compared with untreated tubers. In the ethylene-treated tubers in both studies, sprouts appeared on many eyes but most of them remained very small (<5 mm long). Longer sprouts (>5 mm) appeared after 15 weeks but did not exceed 12 and 59 mm in the laboratory and commercial studies, respectively. Sprouts on ethylene-treated tubers were more easily detached up to 6 weeks after ethylene treatment ended, compared with untreated tubers. In both studies, ethylene treatment was not associated with decay, disorder or internal sprouting problems. In both studies, the Agtron fry color [or U.S. Dept. of Agriculture (USDA) color grade] of ethylene-treated tubers was darker than CIPC-treated tubers at almost all sampling times. Continuous exposure to ethylene was an effective sprout control agent but it produced a darker fry color, compared with CIPC-treated potatoes.

Free access

Gibberellins (GAs) are phytohormones that regulate plant height and flowering time in plants. Plants with reduced GA or disrupted in GA signaling exhibit a dwarf phenotype. DELLA proteins are transcriptional repressors that attenuate GA-mediated promotion of plant growth. Alleles in which the eponymous DELLA motif in these proteins is disrupted result in constitutive repression of GA signaling and a dominantly inherited dwarf phenotype. We found that the dwarf Helianthus annuus (sunflower) cultivar Sunspot is hyposensitive to GA3 as compared with the tall cultivar Mammoth Grey. Sequencing of the HaDella1 gene indicates that ‘Sunspot’ has a single nucleotide polymorphism resulting in a missense mutation in the DELLA motif as compared with ‘Mammoth Grey’ and the reference sequence. Helianthus annuus has five genes encoding DELLA proteins, including HaDella1. We propose that the DELLA motif alteration in the HaDella1 gene results in a dominant mutation in ‘Sunspot’ and is the cause of its dwarf phenotype.

Free access