Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: P. R. Johnstone x
Clear All Modify Search

Mustard cover crop residue has been reported to have a “biofumigant” action when incorporated into the soil, potentially providing significant disease suppression and yield improvement for the succeeding crop. Such activity could be particularly useful in processing tomato rotations, where consecutive cropping invariably results in yield decline. Agronomic and environmental effects of growing over-winter mustard cover crops preceding tomato production were investigated in three field trials between 2002 and 2004. Two mustard cover crops [`Pacific Gold', a brown mustard (Brassica juncea), and `Caliente', a blend of brown and white mustard (Sinapis alba)] were compared to a legume cover crop mix, a fallow bed treatment (the standard grower practice in this region), and, in two of the three trials, a fumigation treatment using metam sodium. No suppression of soil populations of Verticillium dahliae or Fusarium spp. was observed with the mustard cover crops, nor was there any visual evidence of disease suppression on subsequent tomato crops. In these fields, the mustard either had no effect, or reduced tomato yield, when compared to the fallow treatment. At one of two sites, metam sodium fumigation significantly increased tomato yield. The presence of a cover crop, whether mustard or legume, reduced winter runoff by an average of 50% over two years of trials. No benefit of mustard cover cropping beyond this reduction in winter runoff was observed.

Free access

Fruit soluble solids concentration (SSC) is an important quality factor for tomatoes (Lycopersicon esculentum Mill.) grown for processing. The use of drip irrigation often results in undesirably low SSC. The effects of late-season irrigation management on fruit yield and SSC was investigated in a series of drip-irrigated field trials in California from 2000–04. The effects of irrigation cutoff or deficit irrigation implemented 40 to 50 days preharvest (the period corresponding to the initiation of fruit ripening) were compared to a standard grower practice of irrigation cutoff 20 days preharvest. Irrigation cutoff 40 to 50 days preharvest increased SSC but resulted in substantial yield loss, with significantly reduced brix yield (Mg fruit solids ha-1). By contrast, deficit irrigation significantly increased SSC compared to the standard practice, with no significant loss of brix yield. In three commercial fields the effect of deficit irrigation on fruit SSC was investigated. Fruits were sampled on three dates: 1) 4 to 5 weeks preharvest, early-ripening, pink-stage fruit only, 2) about 1 week preharvest, both late-ripening, pink-stage fruit and early-ripening fruit now fully ripe, and 3) commercial harvest, composite of early- and late-maturing fruit. SSC increased in response to soil moisture stress induced by deficit irrigation, with late-maturing fruit as much as 1.6 °brix higher than fruit maturing before significant soil moisture stress. However, once a fruit reached the pink stage of maturity, its SSC was not affected by subsequent soil moisture stress. An additional five commercial field trials were conducted to compare growers' irrigation practices with greater degrees of deficit irrigation. In each field the grower's deficit irrigation regime was compared to a reduced treatment receiving 25% to 50% less water over the final 4 to 7 weeks before harvest. Across fields, applying 20% to 60% of reference evapotranspiration (ETo) over the fruit ripening period resulted in acceptable SSC without significant brix yield reduction. We conclude that deficit irrigation initiated during early fruit ripening provides a flexible tool for SSC management. Brix monitoring of earliest ripening fruit can help classify fields as to the severity of irrigation deficit required to reach desirable SSC at harvest.

Free access

The effect of K fertigation through subsurface irrigation lines on processing tomato (Lycopersicon esculentum Mill.) fruit yield and quality was evaluated in four field trials in California from 2002–04. Fields had exchangeable soil K between 0.48 to 0.85 cmol·kg–1, with high exchangeable Mg (10.6 to 13.7 cmol·kg–1) and a history of yellow shoulder (YS, a fruit color disorder) occurrence. K treatments evaluated included seasonal amount applied (0 to 800 kg·ha–1), fertigation method (continuous versus weekly), and timing (early, mid or late season); foliar K treatments were also included in the 2002 trial. In two fields total and marketable fruit yield were significantly increased by K fertigation, and fruit color improvements were observed in all trials. Among color parameters improved by K fertigation were YS incidence, blended color, and L*, chroma, and hue of the shoulder region of fruit. K fertigation did not affect fruit soluble solids concentration. Yield increased only with fertigation treatments initiated during early fruit set. The effects of fertigation method and rate were inconsistent. Foliar K application was ineffective in increasing either fruit yield or quality.

Free access

Soluble solids concentration (SSC) is a major quality factor for tomatoes (Lycopersicon esculentum Mill.) grown for processing. The effects of early irrigation cutback were investigated in a series of drip-irrigated field trials in California from 2000-03. Irrigation cutback was initiated from 4-7 weeks preharvest, with irrigation volume reduced to 30% to 70% of reference evapotranspiration. Early irrigation cutback was compared to full irrigation until cutoff 2-3 weeks preharvest. SSC was monitored from the initiation of deficit irrigation until harvest, with breaker-stage fruit sampled at approximately 10-day intervals; additionally, early-maturing fruits were tagged on the plant at breaker stage and retrieved at harvest for SSC analysis. Fruit yield, overall SSC, and brix yield (Mg·ha-1 fruit solids) were evaluated at commercial maturity. Fruit SSC increased in response to soil moisture stress, with late-maturing fruit as much as 2.0 °Brix higher than fruit maturing before significant moisture stress. However, once a fruit reached the breaker stage of maturity, its SSC did not increase regardless of subsequent soil moisture stress. Across field trials, yield decline resulting from early irrigation cutback was matched by a corresponding increase in overall SSC, resulting in equivalent brix yield in all test fields. We conclude that the early irrigation cutback provides a flexible tool for SSC management and that °Brix monitoring of breaker-stage fruit can augment soil moisture monitoring to tune irrigation management to field-specific conditions.

Free access