Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: N. Suzanne Lang x
Clear All Modify Search

Premature leaf blackening in Protea severely reduces vase life and market value. The current hypothesis suggests that leaf blackening is induced by a sequence of events related to metabolic reactions associated with senescence, beginning with total depletion of leaf carbohydrates. It is thought that this carbohydrate depletion may induce hydrolysis of intercellular membranes to supply respiratory substrate, and subsequently allow vacuole-sequestered phenols to be oxidized by polyphenol oxidase (PPO) and peroxidase (POD) (Whitehead and de Swardt, 1982). To more thoroughly examine this hypothesis, leaf carbohydrate depletion and the activities of PPO and POD in cut flower Protea susannae × P. compacta stems held under light and dark conditions were examined in relationship to postharvest leaf blackening. Leaf blackening proceeded rapidly on dark-held stems, approaching 100% by day 8, and was temporally coincident with a rapid decline in starch concentration. Blackening of leaves on light-held stems did not occur until after day 7, and a higher concentration of starch was maintained earlier in the postharvest period for stems held in light than those held in dark. A large concentration of the sugar alcohol, polygalatol, was maintained in dark- and light-held stems over the postharvest period, suggesting that it is not involved in growth or maintenance metabolism. Polyphenol oxidase activity in light- and dark-held stems was not related to appearance of blackening symptoms. Activity of PPO at pH 7.2 in light-held stems resulted in a 10-fold increase over the 8-day period. Activity in dark-held stems increased initially, but declined at the onset of leaf blackening. There was no significant difference in POD activity for dark- or light-held stems during the postharvest period. Total chlorophyll and protein concentrations did not decline over the 8-day period or differ between light- and dark-held stems. Total phenolics in the dark-held stems increased to concentrations ≈30% higher than light-held stems. Consequently, the lack of association between membrane collapse, leaf senescence, or activities of oxidative enzymes (PPO or POD) with leaf blackening does not support the hypothesis currently accepted by many Protea researchers. An alternative scenario may be that the rapid rate of leaf starch hydrolysis imposes an osmotic stress resulting in cleavage of glycosylated phenolic compounds to release glucose for carbohydrate metabolism and coincidentally increase the pool of free phenolics available for nonenzymatic oxidation. The physiology of such a carbohydrate-related cellular stress and its manifestation in cellular blackening remains to be elucidated.

Free access

Xylem vessel anatomy was examined in tissues surrounding the graft union of sweet cherry (Prunus avium L.) scion (stem) and nondwarfing, semi-dwarfing, or dwarfing rootstock (root) combinations, to characterize potential changes in anatomical features during the initial stages of graft union formation. Vessel element length, frequency, diameter, lumen area (LAV), and mean vessel hydraulic diameter (VDh) were examined in `Rainier' (P. avium) scion wood grafted onto nondwarfing `Colt' (P. pseudocerasus L. × P. avium) or `F 12/1' (P. avium) rootstock and semi-dwarfing `Gisela 6' [`Gi 6' (P. cerasus L. × P. canescens L.)], or dwarfing `Gisela 5' [`Gi 5' (P. cerasus × P. canescens)] rootstock systems in: heterograft combinations (commercial scion-rootstock combinations); homografts (scion and rootstock are the same genetic material); and reciprocal heterografts (rootstock tissue grafted onto scion tissue). Vessel element length was not affected by rootstock, but vessel frequency and lumen area in graft union tissues were smaller in `Rainier'/`Gi 5' (dwarfing combination) than in `Rainier'/`Colt' (nondwarfing combination). The heterograft combination of `Rainier'/`Gi 5' had smaller scion LAV, lower VDh and narrower vessels than homograft or reciprocal heterograft combinations. As callus differentiated into vascular elements, xylem rays in `Rainer'/`Gi 5' tended to develop at an acute angle to the longitudinal axis of the tree and there was an increase in nonfunctional phloem in `Rainer'/`Gi 5' compared to `Rainer'/`F 12/1'. Collectively, the data provides further evidence that a combination of smaller and fewer vessels in the scion and graft union, as well as irregular vessel orientations in the vascular tissue within dwarfing combinations could contribute to hydraulic resistance in the graft union resulting in reduced scion growth (dwarfing).

Free access

Dwarfing rootstocks in sweet cherry (Prunus avium L.) have been planted worldwide. No single theory has emerged to answer why scion dwarfing occurs in fruit trees. This research examines the vascular pathway in a dwarfing cherry system to determine if physical limitations alter water transport as a possible dwarfing mechanism. Second-leaf `Lapins' trees grafted onto Gisela 5 (Gi5; dwarfing) and Colt (vigorous) rootstocks were field-grown in East Lansing, Mich. During maximum shoot elongation, trees were dug, placed into containers with safranin dye solution (0.1% w/v) for 6 hours and then removed for division (3-5 cm in length) based on location in scion, graft union, and rootstock tissue. Tissues were sectioned using a sliding microtome (120 μm) for examination with a laser confocal microscope (Zeiss LSM Pascal). Mean stem area and vessel diameter were measured; and mean hydraulic diameter was calculated for vessels in the area of dye translocation. Overall, Lapins/Gi5 stem area in the graft union was larger compared to Lapins/Colt; however dye translocation in Lapins/Gi5 was reduced compared to other tissues in the tree. Confocal microscopy indicated dye uptake through the grafted region was more uniformly distributed in Lapins/Colt than in Lapins/Gi5, with dye accumulation in areas of maximum translocation. Vessel diameter did not differ in these areas of translocation. However, in both combinations there was a reduction in mean hydraulic diameter of graft union sections, suggesting a reduction in vessel efficiency to translocate water in this region. Vascular system anomalies were more frequent in Lapins/Gi5, disrupting acropetal dye translocation. This suggests the greatest reduction in vascular transport is in Lapins/Gi5.

Free access

Previous research has shown that maple (Acer spp.) leaf litter resulted in fewer common dandelions (Taraxacum officinale) when mulched into established turfgrass. However, the leaves used in that research may have contained herbicide residues and were separated by genus, not species. Our research compared the effects of pesticide-free mulched maple and oak (Quercus spp.) leaves on dandelion populations in an established kentucky bluegrass (Poa pratensis) stand maintained as a residential lawn on sandy loam soil. The objectives of this study were to quantify the effectiveness of maple or oak leaf mulches as an organic common dandelion control method and to identify which maple species and rates (particle size and rate per unit area) provided the most effective control. The experimental design was a randomized complete block with treatments arranged as a 5 × 2 × 2 + 1 factorial, with tree leaf species, leaf particle size, leaf application rate, and control as main factors. Leaf species were red maple (Acer rubrum), silver maple (A. saccharinum), sugar maple (A. saccharum), high sugar content sugar maple, and red oak (Quercus rubra). Particle sizes were coarse (0.4–1.0 inch2) and fine (≤0.2 inch2), and application rates were low (0.5 kg·m−2) and high (1.5 kg·m−2). Mulch applications were made in Fall 2003 and 2004 and data were collected beginning in Spring 2004 on kentucky bluegrass spring green-up, and common dandelion plant counts. The high application rate, regardless of tree genus or species, resulted in the highest green-up ratings. Common dandelion plant counts after one (2003) and two (2003 and 2004) mulch applications at the high rate showed that up to 80% and 53% reduction was achieved, respectively. Results indicate that mulching leaves regardless of genus (oak or maple) or maple species into established turfgrass as a leaf litter disposal method will increase spring green-up and contribute to a reduction in common dandelion population.

Free access