Search Results

You are looking at 11 - 17 of 17 items for

  • Author or Editor: Michelle L. Jones x
Clear All Modify Search

Autophagy allows for the degradation and recycling of macromolecules and organelles. It plays a significant role in cellular homeostasis, nutrient remobilization during leaf senescence, and abiotic stress responses. Autophagosomes are the hallmark feature of autophagy, and their formation is regulated by the AuTophaGy-related (ATG) genes. The expression profiles of ATG genes have been reported in several agronomic and model plants. To gain insight into the role of autophagy in senescence and abiotic stress responses in floriculture crops, we investigated the regulation of petunia (Petunia ×hybrida) ATG genes (PhATG4, PhATG5, PhATG6, PhATG7, PhATG8a, and PhATG13) during flower senescence and in response to low fertility, nutrient deficiency (-N, -P, and -K), and chronic (weeks) or acute (hours) salt stress using quantitative polymerase chain reaction (PCR). Age-induced corolla wilting coincided with the increased expression of all ATG genes. Petunia ATG genes were upregulated by low fertility and N and P deficiency. Acute salt stress rapidly increased the expression of the petunia ATG genes, but chronic salt stress treatments did not. This project provides insight into the role of autophagy in flower senescence and abiotic stress responses in floriculture crops.

Free access

Metacaspases are cysteine proteases from plants, fungi, and protozoans that have structural similarity to metazoan caspases. They play a critical role in programmed cell death (PCD) induced by developmental cues and environmental signals. In this study, a type I metacaspase (PhMC1) was identified and characterized from Petunia ×hybrida ‘Mitchell Diploid’ (MD) (petunia). The recombinant PhMC1 had activity against the metacaspase substrate Boc-GRR-AMC (GRR). Activity was highest at pH 7–9 and was dependent on the active site C237. Quantitative polymerase chain reaction (qPCR) showed that PhMC1 transcripts increased at a later stage of petal development, when corollas were visibly senescent in both pollinated and unpollinated flowers. Gene expression patterns were similar to that of the senescence-related gene PhCP10, a homolog of Arabidopsis thaliana (arabidopsis) AtSAG12. PhMC1 transcripts were upregulated in the petals by ethylene treatment. This ethylene regulation did not require protein synthesis, indicating that PhMC1 is a primary ethylene response gene. Metacaspase-like activity against Boc-GRR-AMC increased in protein extracts from senescing petals. RNAi was used to knock down the expression of PhMC1. Transgenic PhMC1 petunias had no abnormal, vegetative growth phenotypes under normal greenhouse conditions, but flower senescence was accelerated by an average of 2 days.

Free access

Humic substances are components of soil organic matter that influence soil structure and fertility. Humic and fulvic acids can be extracted from soil and other organic sources, and are used as biostimulants to promote plant growth and increase nutrient availability and uptake. The goal of this study was to determine whether selected humic and fulvic acid–based commercial products would promote growth and flowering of petunia (Petunia ×hybrida) ‘Picobella Blue’ grown in soilless media with low or optimal fertilizer rates. Plants were grown in 11.4-cm pots filled with peat-based media [80:20 peat:perlite (v/v); pH 5.4]. Three biostimulant products were evaluated at different rates and application frequencies: Huma Pro, a liquid humic acid biostimulant; Fulvi Pro, a liquid fulvic acid biostimulant; and Micromate, a powder containing both humic and fulvic acids. In Expt. 1, Huma Pro and Fulvi Pro were drenched weekly onto the growing media at a rate of 5, 10, or 20 mL⋅L–1; Micromate was drenched weekly at a rate of 5, 10, 20, or 40 g⋅L–1. Plants were fertilized with either 50 mg⋅L–1 nitrogen (N) (low fertility) or 100 mg⋅L–1 N (optimal fertility) from Jack’s Professional 20N–1.3P–15.7K Petunia FeED each irrigation. Control plants received fertilizer but no biostimulant treatments. In Expt. 2, biostimulant treatments were drenched once at transplant, biweekly, or weekly at a rate of 1.25, 2.5, 5, or 10 mL⋅L–1 for Huma Pro and Fulvi Pro; and at 5, 10, 20, or 40 g⋅L–1 for Micromate. All plants received constant liquid feed at the lower fertilizer rate of 50 mg⋅L–1 N. In Expt. 1, plants fertilized with 100 mg⋅L–1 N and treated with 20 g⋅L–1 Micromate had the best performance. The average shoot dry weight was 32% greater than that of the control plants. Micromate (20 g⋅L–1)-treated plants had an average of five more flowers per plant, and they flowered 4 days earlier than untreated control plants. In Expt. 2, plants treated with 40 g⋅L–1 of Micromate weekly had the greatest shoot dry weight compared with the other treatments. Weekly Micromate treatments (40 g⋅L–1) resulted in plants with an average of 13 more flowers per plant, which flowered 7 days earlier than control plants. Plants treated with Fulvi Pro and Huma Pro at 20 mL⋅L–1 had a significantly greater concentration of potassium in shoot tissue, whereas Micromate treatments at 20 and 40 g⋅L–1 resulted in a greater concentration of phosphorous in the shoots. The humic and fulvic acids in Micromate improved petunia crop quality by promoting vegetative growth, increasing flower numbers, and reducing the time to flower.

Open Access

Drought stress is a major cause of postproduction decline in bedding plants. The plant hormone abscisic acid (ABA) regulates drought stress responses by mediating stomatal closure, thereby reducing transpirational water loss. Exogenous ABA applications delay wilting and allow plants to survive short periods of severe drought. The effectiveness of the ABA biochemical, s-ABA (ConTego™; Valent BioSciences Corp., Libertyville, IL), at delaying wilting and extending shelf life during drought stress was evaluated in six bedding plant species. Spray and drench applications of 0 or 500 mg·L−1 s-ABA were applied to Impatiens walleriana (impatiens), Pelargonium ×hortorum (seed geranium), Petunia ×hybrida (petunia), Tagetes patula (marigold), Salvia splendens (salvia), and Viola ×wittrockiana (pansy). Water was subsequently withheld and wilting symptoms were compared between treated and control plants. s-ABA applications delayed wilting in all crops by 1.7 to 4.3 days. Leaf chlorosis was observed after s-ABA application in drought-stressed seed geraniums, marigolds, and pansies. In seed geraniums and marigolds, the drought stress itself resulted in leaf chlorosis that was equivalent to or more severe than the s-ABA application alone. In pansies, s-ABA applications induced leaf chlorosis that was more severe than the drought treatment. Overall, s-ABA was consistently effective at reducing water loss and extending shelf life for all species treated. Applications of s-ABA to bedding plants before shipping and retailing would allow plants to maintain marketability even under severe drought stress conditions.

Free access

Phalaenopsis orchids are an increasingly popular potted house plant in the United States. New cultivars have a long display life in home environments, but these epiphytes are often overirrigated by consumers. Irrigating potted Phalaenopsis orchids weekly with ice cubes has been recommended as a simple solution to help consumers, but concern has been raised about whether the ice cubes will cause low temperature damage in these tropical plants. The effect of ice cube irrigation on the display life and quality of four cultivars of potted Phalaenopsis orchids was, therefore, evaluated. Irrigation treatments included weekly application of three ice cubes or the equivalent volume of room-temperature tap water. The longevity of individual flowers and the overall display life of the orchid plants were determined. Monthly measurements determined the volume of leachate in the outer decorative pots after irrigation. The quantum yield of photosystem II (ΦPSII) in roots and leaves was evaluated monthly to determine if photosynthetic efficiency was affected by the ice irrigation. The temperature in the orchid bark growing media during irrigation events was recorded, and a programmable antifreeze bath was used to determine the temperature at which damage to PSII was observed in orchid roots. The flower longevity and display life were unaffected by irrigation treatment. In general, the leachate volume over time was the same or lower in ice irrigated orchids compared with those irrigated with the same volume of water. The lowest temperature in the bark media irrigated with ice cubes was ≈11 °C, while controlled freezing experiments showed that damage to photosystem II in orchid roots did not occur until bath temperatures were below −7 °C. The internal temperature of roots in direct contact with ice cubes decreased to around 4 °C. Ice cube irrigation had no detrimental effects on the quality or display life of potted Phalaenopsis orchids growing in bark, demonstrating that ice cubes are a viable method of irrigating these tropical house plants.

Open Access

Deciduous holly branches were visually rated over a period of 5 weeks to evaluate differences in display life between various cultivars of winterberry (Ilex verticillata) and japanese winterberry (I. serrata) x winterberry. Holly branches were naturally defoliated and the postharvest performance of the cut branches was therefore based on the quality and longevity of the fruit. Chemical treatments including floral preservative, floral preservative plus silver, and anti-transpirant were also evaluated. `Bonfire' and `Sunset' had the highest ratings for marketability based on the longevity and quality of their fruit. `Bonfire' and `Winter Red' had the highest fruit density per stem. Treatment with floral preservatives significantly increased the display life of holly branches. Preservative plus silver delayed deterioration later in the study, presumably by delaying the senescence of the fruit. Anti-transpirant treatment did not decrease solution uptake by the holly stems. Cold storage of dry branches at 0.00 ± 1.11 °C (32.0 ± 2.0 °F) did not significantly reduce branch display life if held for 23 days or less. Cut branches of all cultivars had a longer display life when stuck in sand and left outdoors in a lath house than when rated in vase solutions indoors. This study indicates that deciduous holly branches provide an attractive alternative cut branch for both interior and outdoor holiday displays.

Full access

Mature pollen from Petunia hybrida contains significant levels of 1-aminocyclopropane-1-carboxylic acid (ACC), and this ACC is thought to play a role in pollination-induced ethylene by the pistil. We investigated the developmental accumulation of ACC in anthers and pollen. The level of ACC in anthers was very low until the day before anthesis, at which time it increased 100-fold. A 1.1-kb partial ACC synthase cDNA clone (pPHACS2) was amplified from total RNA isolated from mature anthers by reverse transcriptase, followed by polymerase chain reaction using oligonucleotide primers synthesized to conserved amino acid sequences in ACC synthases. The expression of pPHACS2 mRNA during anther development was correlated with the accumulation of ACC and was localized to the pollen grain. The pPHACS2 cDNA was used to identify the PH-ACS2 gene from a library of genomic DNA fragments from Petunia hybrida. PH-ACS2 encoded an ACC synthase transcript of four exons interrupted by three introns. The ACC synthase protein encoded by the PH-ACS2 gene shared >80% homology with ACC synthases from tomato (LE-ACS3) and potato (ST-ACS1a). A chimeric PH-ACS2 promoter-β-glucuronidase (GUS) gene was used to transform petunia and transgenic plants were analyzed for GUS activity. GUS staining was localized to mature pollen grains and was not detected in other tissues. Despite similarities to LE-ACS3, we did not detect GUS activity under conditions of anaerobic stress or in response to auxin. A series of 5-prime-flanking DNA deletions revealed that sequences within the PH-ACS2 promoter were responsible for pollen-specific expression.

Free access