Search Results

You are looking at 11 - 20 of 22 items for

  • Author or Editor: Michael Parker x
Clear All Modify Search

Many of the apples (Malus ×domestica) grown in the southeastern United States are sold to consumers through direct farm markets and roadside stands. Fruit in these markets may be exposed to high temperatures (>68 °F), which cause the fruit to ripen quickly, limiting their shelf life and consumer appeal and increasing their susceptibility to decay pathogens. Studies were undertaken in 2009 and 2010 to determine the effects of a 1-μL·L−1 postharvest 1-methylcyclopropene (1-MCP) treatment on the maintenance of flesh firmness and the incidence of rots in fruit held at elevated temperatures for up to 8 weeks. 1-MCP-treated fruit of three apple cultivars (Ginger Gold, Gala, and Golden Delicious) held in three retail farm markets in the southeastern United States maintained their firmness for 3 to 5 weeks. The firmness of non-treated ‘Ginger Gold’ fruit declined to less than 12 lbf after 1 week in each market, whereas the firmness of treated fruit remained greater than 16 lbf after 3 weeks. Treated ‘Gala’ fruit maintained their firmness at 14 lbf during 4 weeks in each farm market, whereas the firmness of non-treated fruit declined to less than 12 lbf after 2 weeks. The firmness of non-treated ‘Golden Delicious’ fruit declined to less than 12 lbf after 1 week in each farm market, whereas treated fruit maintained their firmness for up to 4 weeks. ‘Golden Delicious’ fruit treated with 1-MCP exhibited almost no loss of firmness during 4 weeks at 32, 50, or 70 °F, or even up to 8 weeks at 32 or 50 °F. The incidence of fruit rots increased with temperature, and 1-MCP reduced the incidence of fruit rots after 4 weeks at 70 °F in 2009 or after 8 weeks at 70 °F in 2010. These data show that 1-MCP may be of great benefit to producers who sell their fruit directly to the consumer by delaying the loss in firmness and reducing the incidence of rots in fruit kept at elevated temperatures.

Full access

Southeastern peach and pecan orchards weathered hurricanes in the 1980s and 1990s that left long-term effects on tree health and productivity. Pecan trees were affected the most, due to being blown down from strong winds and wet soils or suffering considerable damage to branches and immature nuts resulting in massive nut drops. Premature nut drop triggered or enhanced alternate bearing problems. Cultivar differences were evident in the ability of trees to withstand wind damage, with open-canopy trees being most resistant, but essentially all trees were damaged when they exceeded ≈17m in height. Hurricanes in older, alternate-bearing orchards sometimes broke enough limbs to induce sufficient vegetative regrowth to reestablish an equilibrium between sink (nuts) and source (foliage), thus enhancing yields in subsequent years. Peach trees which were less than 4.5 m tall and already harvested usually did not blow over unless the soil was very wet. However, peach trees were often twisted about the tree axis from the change in wind directions as the hurricane passed over. Afterwards, many trees leaned more than 30 °, especially trees less than 6 to 7 years of age. Root damage was significant and increased when trees were manually repositioned as additional root breakage occured from which these trees often later died. Trees not repositioned but instead retrained to vertical by pruning lived longer. Ambrosia beetles also attacked wind-stressed trees and caused a long-term decline. Slow moving hurricanes significantly damaged peach trees by waterlogging the soil, which killed roots and helped primary pathogens such as Phytophthora sp. to attack the tree crown. This was followed by secondary pathogens like Oxyporous sp., which attacked the internal woody cylinder. Initial trunk damage appeared localized; however, trees continued to die over a number of years. Experience showed that whole orchard removal on severe waterlogged sites was the best economical response.

Free access

With the current situation facing land grant universities of declining resources and a portion of federal funding being dependent upon multistate activities, the search for means to successfully address clientele needs may be handled through multistate activity. In the Southeast, the tree fruit programs, both research and extension, have been evaluating areas that could be addressed with multistate programming. To date, most of the tree fruit multistate activities have been informal in nature. The apple program was the first to look at multistate activity because of the heavy concentration of the industry in the mountains of NC, SC, GA, and TN. The formation of the Southeastern Apple Growers Meeting, which combined the annual educational meeting for apple growers in NC, GA, SC, and TN, was the first initiative. It proved to be very successful with the completion of the eighth joint meeting. In addition, the pest management guides for both apple and peach have been combined for many of the southeastern (five states) and southern states (11 states), respectively. Numerous working groups, workshops, tours, and field days are held on a regional scale as well. However, in order for multistate programming to succeed, our experience suggest the need for several key components. The technical competence in the program to be addressed, a supportive university administration, backing of the industry groups, and personnel that are neither territorial nor resistant to change must be present. From our experience multistate programming can be very successful!

Free access

`Fuji' apples (Malus domestica Borkh.) were harvested at three maturities for three consecutive seasons. Fruit firmness, soluble solids concentration, starch—iodine index (SI), and internal ethylene concentration were measured at harvest. Fruit were stored in 0 °C air storage for 8 months. Fruit firmness and other maturity indices were measured monthly during storage. Using a stepwise regression procedure, harvest maturity indices were used to predict firmness after air storage. When all maturity indices measured were represented in the model, R 2 = 0.29, 0.34, and 0.26 at 4, 6, and 8 months, respectively. Use of only SI and fruit firmness in the model gave R 2 values of 0.25, 0.29, and 0.24 for 4, 6, and 8 months, respectively. Although R 2 values were low, they were highly significant. The model using fruit firmness and SI resulted in the best fit. Thus, an equation was developed using months of air storage, firmness, and SI at harvest. Actual firmness values correlated fairly well with predicted firmness values, usually within ≈5 N. On Washington apples, predicted values were 4.3 and 3.7 N too low compared to actual firmness values after 3 or 5 months' storage. In 1993, when predicted and actual firmness values were compared for Pennsylvania apples, predicted values ranged from 2.6 to 8.3 N too high after 3 months' storage, depending on harvest date. In 1994, Pennsylvania fruit stored 4 months had predicted values 0.5 N too high to 6.3 N too low, depending on harvest date. It may be possible to develop and refine models for an apple variety that would be applicable to several regions.

Free access

Smooth crabgrass (Digitaria ischaemum) and goosegrass (Eleusine indica) are problematic weeds in creeping bentgrass (Agrostis stolonifera) because of limited herbicide options for postemergence (POST) control and turfgrass injury potential. Metamifop is a herbicide currently being considered for release to markets in the United States but information is lacking on the most effective rates and application timings for smooth crabgrass and goosegrass control in creeping bentgrass. Field trials were conducted in Auburn, AL in 2009 and 2013 to evaluate metamifop rates (200 to 800 g·ha−1) and single or sequential application timings compared with fenoxaprop (51 to 200 g·ha−1) at two different mowing heights. Metamifop applied twice and three times sequentially at 200 g·ha−1 provided the greatest smooth crabgrass (>97%) and goosegrass (>90%) control at rough (1½ inch) and green (1/8 inch) mowing heights without unacceptable creeping bentgrass injury at 56 days after initial treatment. All treatments caused <20% visible injury on creeping bentgrass at both mowing heights except the highest rate of metamifop. Smooth crabgrass control at the green mowing height was greater than at the rough mowing height, especially at lower metamifop rates with a single application.

Free access

Orchard floor vegetation competes with peach trees for water and nutrients and may harbor pathogens and insects. Tree growth, fruit yield, and fruit size can be optimized through management of vegetation in the tree row and irrigation. Under-tree vegetation-free strip widths (0, 0.6, 1.2, 2.4, 3.0, and 3.6 m) and irrigation were studied in years four through eight of a young peach orchard to determine their effects on peach tree growth and fruit yield, harvest maturity, and fruit size. Immature fruit samples were collected during thinning in years four through six to determine the effect of the treatments on the incidence of hemipteran (catfacing) insect damage. Trunk cross-sectional area (TCSA), as a measure of tree growth, increased with increasing vegetation-free strip width; trees grown in the 3.6-m vegetation-free strip had TCSAs 2.2 times greater, on average, than trees grown in the 0-m vegetation-free strip. TCSA also increased with irrigation; trees grown with irrigation had TCSAs 1.2 times greater, on average, than trees grown without irrigation. Yield increased with increasing vegetation-free strip width, from 9.6 kg per tree in the 0-m plot to 26.5 kg per tree in the 3.6-m plot in year four, to 24.3 kg per tree in the 0-m plot and 39.6 kg per tree in the 3.6-m plot in year eight, for a total yield over years 4–8 per tree of 100 kg in the 0-m plot compared with 210 kg per tree in the 3.6-m plot. Yield, average fruit weight, and average fruit diameter increased with irrigation in three of 5 years; the other 2 years had higher than average rainfall reducing the need for supplemental irrigation. In 3 out of 5 years fruit in irrigated plots matured earlier than fruit in nonirrigated plots. In all years, fruit grown in the 0-m strip matured earliest and had the smallest diameter. Establishing a vegetation-free strip of as narrow as 0.6 m reduced the incidence of catfacing damage compared with the 0-m treatment, even though the orchard was on a commercial pesticide spray schedule. The least damage was seen with the industry standard vegetation-free strip widths greater than 3.0 m with or without irrigation.

Free access

Three experiments were undertaken to evaluate the effects of different preharvest 1-methylcyclopropene (1-MCP) spray treatments on apple (Malus × domestica Borkh.) fruit maturity at harvest and quality after long-term storage in a regular atmosphere or controlled atmosphere (CA). Trees were sprayed within 7 days of the anticipated harvest date (H) and fruit for long-term storage were sampled at either H in the case of ‘Law Rome’ or at harvest dates that were delayed by up to 21 days (H + 21) in the case of ‘Golden Delicious’ and ‘Law Rome’. Preharvest 1-MCP sprays within 7 days of H reduced fruit drop, internal ethylene concentration, and starch index and reduced firmness loss during long-term storage of fruit at delayed harvest dates but had only minor effects on fruit maturity at H. Preharvest 1-MCP sprays reduced the incidence of superficial scald on ‘Law Rome’ apples more effectively than either diphenylamine or CA storage. Application of 1-MCP within 7 days of H may be used to delay harvest date, thereby allowing continued fruit growth without a concomitant advance in fruit maturity and to reduce firmness loss and superficial scald during long-term storage both for normal and delayed harvests.

Free access

Experiments were conducted to compare the effects of different preharvest and postharvest 1-methylcyclopropene (1-MCP) treatment combinations on ‘Law Rome’ and ‘Golden Delicious’ apple fruit. Preharvest 1-MCP sprays had minimal effects on maturity as determined by flesh firmness, starch index, internal ethylene concentration, and soluble solids concentration. Fruit internal ethylene concentration and firmness loss after 30- to 40-days storage at 0 °C plus 7 days at 20 °C were reduced by preharvest and postharvest 1-MCP treatments. The positive effects of preharvest 1-MCP on postharvest quality of ‘Law Rome’ declined in fruit that were harvested 3 days or more after spraying, whereas preharvest 1-MCP continued to have a positive effect on postharvest fruit quality of ‘Golden Delicious’ that were harvested up to 9 days after spraying. The loss in postharvest effects of preharvest 1-MCP treatment on ‘Law Rome’ at delayed harvests was reinstated by exposing fruit to gaseous 1-MCP on the day of harvest. These findings suggest that attached apple fruit of some cultivars may be capable of rapidly generating new ethylene receptors.

Free access

`Fuji' apple trees [Malus ×sylvestris (L.) Mill. Var domestica. (Borkh.)] on five semidwarfing rootstocks (CG.4814, CG.7707, G.30N, M.26 EMLA, and M.7 EMLA) were planted at nine locations (CA, KY MO NC OH PA SC UT and WA) under the direction of the NC-140 Multistate Research Project. After four growing seasons (through 2002), trees on CG.7707 and M.7 EMLA were the largest, and those on M.26 EMLA were the smallest. M.7 EMLA resulted in more cumulative root suckering per tree than did any other rootstock. Yield per tree in 2002 and cumulatively was greatest from trees on CG.4814, CG.7707, and G.30N and least from trees on M.26 EMLA and M.7 EMLA. The most yield efficient trees in 2002 and cumulatively were on CG.4814, and the least efficient trees were on M.26 EMLA and M.7 EMLA. Rootstock did not affect fruit weight in 2002; however, on average, CG.7707 resulted in the largest fruit, and CG.4814 resulted in the smallest. Limited data will be presented on CG.6210, G.30T, and Supporter 4, which are planted only at some locations. Data for the fifth season (2003) will be presented.

Free access