Search Results

You are looking at 11 - 20 of 27 items for

  • Author or Editor: Mark Ritenour x
Clear All Modify Search

Previous research showed that mature green tomato fruit dipped 1 to 4 min in a 1% CaCl2 solutions before storage had significantly increased peel calcium content and reduced postharvest decay. The present experiments, conducted over 3-day periods (reps), evaluate treatment effectiveness under commercial packinghouse conditions. Three cartons of 5 × 6 sized mature green `FL 47' tomatoes were collected from the line (control). CaCl2 was then added to the packinghouse 15,142-L dump tank to a concentration of 1% before more fruit were run through the line and three additional cartons collected. The cycle was repeated after bringing the concentration in the dump tank up to 2% CaCl2. After storage for ≤24 days at 20 °C, postharvest decay was significantly reduced in fruit receiving the 2% CaCl2 treatment. Calcium content in the tomato peel tended to increase with each successively higher CaCl2 treatment, but differences were nonsignificant. Laboratory tests showed Rhizopus more affected by 3% CaCl2, while Alternaria was affected by 2% and 3% CaCl2 solutions. Results were recorded as colony diameter, but colony morphology and sporulation were also affected. Inoculation studies of tomatoes dipped in 1% CaCl2 after wounding with Rhizopus or Alternaria showed better decay control when compared to treating before wounding.

Free access

Up to three hurricanes (Charley, Frances, and Jeanne) passed over the same citrus-producing areas of Florida in August and September 2004. In October 2005, hurricane Wilma also passed over South Florida. We began evaluating citrus tree recovery in four commercial groves (red and white grapefruit, and `Murcott' tangerine) following the 2004 hurricanes to determine how quickly commercial groves recover following such catastrophic events. We previously reported that, among other things, even branches formed after the last 2004 hurricane matured sufficiently to flower the following spring, but to a lesser extent than older shoots. Here, we report hurricane effects on tree yield, fruit quality, and shelf life. Fruit loss was dramatic following the 2004 hurricanes (>90%). Fruit loss was also substantial following hurricane Wilma, with `Murcott' yields reduced 18% and grapefruit yields reduced 58%-65%. However, in comparison to 2003 pre-hurricane yields, yields following hurricane Wilma declined only 9% for `Murcott,' and 26%-40% for grapefruit. These yield reductions are less than the fruit lost due to the present year's hurricane. Therefore, the citrus trees studied demonstrated tremendous resilience and, if not for another hurricane the following year, would have likely exceeded pre-hurricane yields only 1 year after the devastating 2004 hurricanes. Effects of the hurricanes on harvested fruit quality and shelf life will also be discussed.

Free access

The development of ethylene preconditioning treatments for kiwifruit have made it possible to deliver ripe kiwifruit to consumers early in the season. We report on how maturity and length of storage time affect the ripening responses of kiwifruit [Actinidia deliciosa (A Chev) Liang et Ferguson cv Hayward] preconditioned with 100 ppm ethylene at 0°C for 24 hours and ripened for 10 days at 20°C. Kiwifruit freshly harvested at weekly intervals continued to soften faster in response to ethylene preconditioning compared to air controls for at least 5 weeks following commercial harvest. In contrast, kiwifruit commercially harvested and stored at 0°C for more than 2 weeks no longer responded to low-temperature ethylene preconditioning. However, kiwifruit stored more that 5 weeks were still responsive to exogenous ethylene and softened faster when exposed to continuous ethylene at either 0 or 20°C. Kiwifruit had relatively high respiration rates 1 days after transferring from 0 to 20°C, which quickly dropped to base levels within 1 day. Fruit stored >1 week at 0°C always had higher initial respiration than freshly harvested fruit on transfer to 20°C, and ethylene preconditioning increased initial respiration of freshly harvested fruit but had less of an effect on initial respiration of stored fruit. Plotting firmness against individual fruit's respiration and ethylene production revealed a distinct rise in respiration and ethylene production only after fruit softened to <6.5 N. Preconditioning fruit at 0°C did not significantly alter the timing of the climacteric respiration or ethylene peaks.

Free access

Exogenous application of ethanol (EtOH) vapor to whole tomato fruit or excised pericarp discs inhibits ripening without affecting subsequent quality. Inhibitory EtOH levels are induced in whole tomatoes by a 72 h exposure to anaerobic atmospheres at 20C. In contrast to tomatoes, exposure to EtOH vapor (0 to 6 ml EtOH/kg FW, for 3 to 6 h at 20C) did not retard ripening (e.g., changes in external color, flesh firmness, and soluble solids) of avocado, banana, cucumber, melon, peach, or plum fruit. When the blocked replicates for nectarines were sorted by the firmness of the control fruit, higher levels of EtOH vapor appeared to delay softening of the firmer fruit. From 0 to 4 ml EtOH/kg FW was injected as 95% EtOH into the seed cavity of melon fruit through a surface sterilized area near the equator of the fruit with a plastic syringe fitted with a 7.5 cm long hypodermic needle. Injection of 1 to 4 ml EtOH/kg FW inhibited the softening of `Honey Dew' and muskmelons. Slight tissue necrosis near the site of injection was noted in a few fruit. Unlike the ripening inhibition of tomatoes which is relatively insensitive to the stage of maturity, the inhibition of melon ripening by EtOH appeared to be significantly affected by the maturity of the fruit.

Free access

Previous research suggests that treatment of sliced or vacuum-infiltrated tomato fruit with calcium chloride (CaCl2) solutions may reduce decay, but no work on dipping whole tomatoes has been reported. In the present experiments, `FL 47' tomato fruit were collected at the mature green or pink stage from a local packinghouse, held at 12.5 or 25.0 °C overnight, and then dipped in solutions with 0.5% to 5% CaCl2 with or without 150 ppm sodium hypochlorite. Fruit were dipped for 1 to 4 minutes at temperatures ranging from 0 to 35 °C. Mature green fruit dipped in solutions with 0.5% and 1.0% CaCl2 at 35 °C had significantly lower rates of decay following storage at 12.5 °C (90% RH) than the control (27% vs. 36% decay, respectively). These fruit were also significantly softer after 2 weeks of storage than control fruit (0.85 mm vs. 0.74 mm deformation, respectively) and appeared to be slightly more ripe. Decay in fruit dipped in 2% CaCl2 was not significantly different from the control, while fruit dipped in 3% to 5% CaCl2 developed significantly more decay than control fruit. The CaCl2 treatments had no significant effect on decay of fruit treated at the pink stage and none of the treatments at 0 °C significantly affected postharvest decay. Dips in 2% to 5% CaCl2 significantly increased tomato peel calcium content after storage. Dipping time had no significant effect on peel calcium content.

Free access

Population density of citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), was monitored in a Florida citrus grove for 5 years by scouting weekly for larval-induced mines (leafminer-created tunnels in the leaves) in a replicated citrus plot treated with seven insect control regimes: Admire (imidacloprid) applied at 12, 6, 3, or 2-month intervals; Temik (aldicarb) applied annually; Metasystox-R (oxydemeton-methyl) applied annually; or no insect control. Leafminer populations were highest during the warmer months (April to September) and lowest during the cooler months (November to March). Populations peaked during June in all 5 years monitored. Trees treated with Temik or Metasystox-R had the same number of mines as the untreated controls. A biannual treatment with Admire reduced leafminer damage (number of mines) all 5 years compared with the controls. Additional Admire applications further reduced damage during some, but not all, years. A single application of Admire significantly reduced mines in 3 of the 5 years.

Free access

Citrus black spot (CBS), caused by Guignardia citricarpa, is a fungal disease that was first described in Australia in the 1890s and has since been discovered in Southwest Florida in 2010. The current study evaluated the effects of hot water treatments on mycelial growth of G. citricarpa in vitro and also evaluated postharvest hot-water dips and fungicide treatments on CBS development on ‘Valencia’ oranges. In vitro exposure to 56 °C for 120 seconds, 59 °C for 60 seconds, or 62 °C for 30 seconds suppressed mycelial growth of all three G. citricarpa isolates by >30%. These treatments did not significantly reduce disease incidence or severity of CBS lesion development on whole ‘Valencia’ oranges from CBS-infected trees when the fruit already had visible CBS symptoms before treatment. On asymptomatic fruit, while the treatments did not significantly reduce the incidence of CBS lesion development, fruit dipped in 56 °C water for 120 seconds significantly reduced disease severity after 2 weeks of storage compared with the control. None of the treatments caused peel scalding or fruit quality deterioration. Postharvest application of azoxystrobin, imazalil, or thiabendazole significantly reduced CBS disease severity on fruit that were asymptomatic at harvest, but did not affect disease incidence. These fungicides were not effective on fruit harvested later in the season (April), possibly because most lesion expression had already occurred before harvest, with little left to develop after harvest. On fruit showing CBS symptoms at harvest, postharvest fungicide treatments did not significantly affect disease incidence or severity after storage. Heating the fungicide solutions did not significantly improve fungicide effectiveness. These results demonstrated that fungicide azoxystrobin, imazalil, or thiabendazole could reduce CBS severity, but not incidence, on orange fruit that are still asymptomatic at harvest.

Free access

Western immunoblot analyses showed that small heat shock proteins (smHSPs) are low or undetectable in the peel of `Fuji', `Jonagold', `Criterion', `Gala', and `Delicious' apples [(Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] growing shaded within the tree canopy (shade apples), but are high in apples growing exposed to direct sunlight (sun apples). `Fuji', `Jonagold', and `Gala' sun apples sampled biweekly between 1 July and 21 Oct. 1997 were highest in content of smHSPs on 31 July, 13 Aug., and 10 Sept., corresponding to some of the warmest periods of the sampling period. The smHSPs started to disappear first in `Gala', the earliest maturing cultivar, and last in `Fuji', the latest maturing cultivar indicating that maturity might play a role in regulating smHSP accumulation. In sun apple fruit left on trees for 60 to 120 days beyond commercial maturity and exposed to field temperatures as low as -4 °C, a 71.7 ku (u = unified atomic mass unit) polypeptide was detected with a polyclonal antiwheat (Triticum aestivum L.) HSP70 in the peel and cortex of all five cultivars. While no smHSPs were detected in these apples, three smHSPs, as detected by antibodies against pea (Pisum sativum L.) cytosolic HSP18.1, could be induced in the same fruit 24 hours after heating to 45 °C for 4 hours. In `Fuji' shade apples heated at 40 °C, smHSP accumulation was detected after the second hour of a 4-hour heat treatment and continued to increase over the next 48 hours at 22 °C. Levels of HSP70 did not change in `Fuji' shade apples heated at 45 °C for 2, 4, or 6 hours, but smHSPs became detectable immediately after each of these heat treatments and further increased over the next 24 hours at 22 °C. Accumulation of smHSPs was maximal in the 4-hour heat treatment. After a 4-hour heat treatment at 45 °C, smHSPs increased during the next 48 hours at 22 °C and then declined by 72 hours. Using two-dimensional electrophoretic analysis, as many as 17 proteins ranging from 15 to 29 ku were found to accumulate in the peel 48 hours after a 4-hour heat treatment. Thus, apples can respond rapidly to high temperature stress, even at advanced stages of maturity, by synthesizing smHSPs, which likely play an important role in protecting cellular biochemical processes during these periods of stress.

Free access

This study was undertaken to determine if endogenous IAA content and axillary bud development correlate with phenylalanine ammonia-lyase (PAL) induction and russet spotting (RS) susceptibility among RS susceptible and resistant cultivars of Iceberg lettuce (Lactuca sativa L.). Final levels of ethylene-induced PAL activity and RS development were highly correlated among cultivars, field conditions, and harvest dates. Harvested Iceberg lettuce midribs contained relatively low amounts of free IAA (maximum of 5.2 ng·g-1 fresh weight). There was poor correlation between free IAA content in lettuce leaf midribs and final RS development among all cultivars, growing conditions, and harvest dates. Axillary bud development, as measured by the number of visible buds per head, bud weight, or bud length, were not significantly correlated with final RS development or midrib IAA content. Cultivars with higher initial free IAA content lost much of their IAA after 8 days storage at 5C in air ± ethylene.

Free access

Since the first occurrence of Huanglongbing (HLB) in the Florida commercial citrus industry in 2004, fruit yield and yield components of HLB-affected citrus have declined in endemically affected citrus tree groves. Optimal fertilization is thus critical for improving tree performance because nutrients are vital for tree growth and development, and play a significant role in tree disease resistance against various biotic and abiotic stresses. The objective of the current study was to determine whether leaf nutrient concentration, tree growth, yield, and postharvest quality of HLB-affected citrus trees were improved by the split application of nutrients. The four micronutrient application rates were used as fixed factors and the three nitrogen (N) rates were used as random factors for leaf nutrient analyses, tree growth, fruit yield, and postharvest analyses. Significant leaf manganese (Mn) and zinc (Zn) concentrations were detected when trees received foliar and soil-applied micronutrients regardless of the N rates. There was a strong regression analysis of leaf Mn and Zn nutrient concentration and nutrient rates with R2 : 0.61 and 0.59, respectively. As a result, a significant leaf area index associated with foliar and soil-applied micronutrient rates had a positive correlation with leaf area index and soil pH with R2 : 0.58 and 0.63 during the spring and summer seasons, respectively. Trees that received a moderate (224 kg·ha−1) N rate showed the least fruit decay percentage and total soluble solids (TSS) of 8% more than the lowest (168 kg·ha−1) and highest (280 kg·ha−1) N rates, even though fruit yield variations were barely detected as these micronutrients promoted vegetative growth. Moreover, the TSS to titratable acidity (TA) ratio of foliar and soil-applied micronutrient-treated trees showed 2% and 7% greater values than the foliar-only treated and control trees, respectively. Although micronutrients exacerbated stem-end rind breakdown (SERB), these nutrients significantly improved fruit storage when the fruits were stored for extended periods (8–11 weeks). Thus, moderate N rate, foliar (1×), and soil-applied (1×) micronutrient treatments improved tree growth, fruit postharvest, and fruit storage characteristics.

Open Access