Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: M.B. Kirkham x
Clear All Modify Search

Measurements of soil water content near the soil surface often are required for efficient turfgrass water management. Experiments were conducted in a greenhouse to determine if the dual-probe heat-pulse (DPHP) technique can be used to monitor changes in soil volumetric water content (θv) and turfgrass water use. `Kentucky 31' Tall fescue (Festuca arundinacea Schreb.) was planted in 20-cm-diameter containers packed with Haynie sandy loam (coarse-silty, mixed, calcareous, mesic Typic Udifluvents). Water content was measured with the DPHP sensors that were placed horizontally at different depths between 1.5 and 14.4 cm from the surface in the soil column. Water content also was monitored gravimetrically from changes in container mass. Measurements started when the soil surface was covered completely by tall fescue. Hence, changes in θv could be attributed entirely to water being taken up by roots of tall fescue. Daily measurements were taken over multiple 6- or 7-day drying cycles. Each drying cycle was preceded by an irrigation, and free drainage had ceased before measurements were initiated. Soil water content dropped from ≈0.35 to 0.10 m3·m-3 during each drying cycle. Correlation was excellent between θv and changes in water content determined by the DPHP and gravimetric methods. Comparisons with the gravimetric method showed that the DPHP sensors could measure average container θv within 0.03 m3·m-3 and changes in soil water content within 0.01 m3·m-3.

Free access

The sustainability of soil quality under high tunnels will influence management of high tunnels currently in use and grower decisions regarding design and management of new high tunnels to be constructed. Soil quality was quantified using measures of soil pH, salinity, total carbon, and particulate organic matter (POM) carbon in a silt loam soil that had been in vegetable production under high tunnels at the research station in Olathe, KS, for eight years. Soil under high tunnels was compared with that in adjacent fields in both a conventional and an organic management system. The eight-year presence of high tunnels under the conventional management system resulted in increased soil pH and salinity but did not affect soil carbon. In the organic management system, high tunnels did not affect soil pH, increased soil salinity, and influenced soil carbon (C) pools with an increase in POM carbon. The increases in soil salinity were not enough to be detrimental to crops. These results indicate that soil quality was not adversely affected by eight years under stationary high tunnels managed with conventionally or organically produced vegetable crops.

Free access