Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Leslie A. Weston x
Clear All Modify Search

Sulfentrazone is a promising new herbicide now under evaluation for use in agronomic and ornamental cropping systems. Sulfentrazone selectively controls yellow nutsedge, morningglories, and other annual grasses and broadleaf weeds. Research was conducted to evaluate the efficacy of sulfentrazone in combination with other labeled products for preemergence weed control in nursery crops. Treatments included sulfentrazone at 0.56 and 1.12 kg a.i./ha and sulfentrazone at 0.37 kg a.i./ha in combination with the following; dithiopyr at 0.37 kg, oxyfluorfen at 0.56 kg, metolachlor at 3.36 kg, isoxaben at 0.56 kg, norfluorazon at 2.64 kg, and isoxaben plus oryzalin at 2.24 kg a.i./ha. Combinations of sulfentrazone with isoxaben or metolachlor provided superior control of morningglory spp., honeyvine milkweed, Carolina horsenettle, and yellow nutsedge. Sulfentrazone plus oxyfluorfen or isoxaben plus oryzalin also provided good control. Poorest overall control was obtained with sulfentrazone plus dithiopyr. Viburnum and deciduous holly were slightly injured 4 WAT with sulfentrazone plus metolachlor. Sulfentrazone plus dithiopyr treatments resulted in serious injury to burning bush 4 WAT and slight injury at 8 WAT.

Free access

The nursery industry currently has few options for effective season-long weed control, because few soil persistent herbicides are registered for use in ornamentals. An herbicide that provides season-long weed control with minimal injury to ornamentals would be extremely beneficial because it would enable the nurseryman to produce high-quality ornamentals with minimal weed interference Sulfentrazone (F6285), a newly developed herbicide from the FMC Corp., has shown promising results for weed control in field trials with ornamentals. Additional, trials are needed to further evaluate sulfentrazone in hopes that it may be registered for use in ornamentals in the future. Our objectives are 1) to increase long-term weed management in ornamentals, including woody species and groundcover; 2) to evaluate rate structures of sulfentrazone and combinations, including preemergence and postemergence herbicides; 3) to evaluate sulfentrazone selectivity in weed species and in ornamentals; 4) to evaluate sulfentrazone mode of action in weed species; and 5) to measure the soil activity of sulfentrazone. To achieve the first three objectives, a randomized complete block design will be used to evaluate 10 woody species and 17 herbicide combinations. The response variables will be weed control and phytotoxicity ratings taken at 0, 4, 8, and 12 weeks after treatment. The results of this study will be used in ongoing research trials in an attempt to register sulfentrazone (F6285) for use in ornamentals.

Free access

The U.S. cucumber germplasm collection (753 accessions) and U.S. adapted processing cucumber (Cucumis sativus L.) inbreds and hybrids were surveyed for response to 6.7 kg ae/ha of chloramben. Nine plant introductions (PI 165952, 173892, 179676, 275411, 277741, 279464, 279465, 436609, and 482464) were classified as tolerant to chloramben, based on percentage and rate of field emergence and seedling vigor. All adapted strains evaluated were susceptible to chloramben injury. The chloramben-tolerant accessions (C0) were subjected to two cycles of recurrent half-sib family selection that resulted in 11 C2 families. These families, a susceptible adapted line (WI 2870), and the resistant PI 436609 were evaluated in the field (6.7 kg ae/ha) and laboratory (0.0, 0.01, and 0.0001 M) for response to chloramben challenge. Significant (P = 0.05) differences between families were observed for percentage emergence and phytotoxicity ratings. Correlations between emergence and phytotoxicity ratings at two dates were low (r2 = -0.32 and – 0.05). Significant (P = 0.05) interfamily differences were also recorded for percentage germination, hypocotyl length, primary root length, and number of lateral roots in the laboratory. Correlated responses between these growth variables were high (r2 = 0.78 to 0.84), but correlations between field and laboratory observations were low (r2 = -0.31 to 0.24). We hypothesize that the genetic response to chloramben challenge under laboratory conditions depends on the concentration of the chemical administered. Chemical name used: 3-amino-2, 5-dichlorobenzoic acid (chloramben).

Free access

A series of field studies were conducted from 1999 to 2005 in Ithaca, NY, at the Cornell Turfgrass Research Center as part of the National Turfgrass Evaluation Program (NTEP) to evaluate a collection of 78 fine-leaf fescue cultivars (Festuca spp.) for turfgrass quality, seedling vigor, and ability to inhibit the establishment of common annual and perennial weeds. Using these criteria, we evaluated the overall suitability of the cultivars for use in turfgrass settings, as well as their potential weed suppressive or allelopathic ability. The ability of fine-leaf fescue to displace weeds was visually evaluated by density-wise comparison, and several cultivars of the 78 studied consistently established well and provided good to very good suppression (greater than 70%) of common turf weeds when established at the same planting density. Other cultivars provided moderate (between 35% and 70%) to (< 30%) little weed suppression. Greater weed suppressivity is likely associated with the differential ability of fescue cultivars to establish rapidly and to form a dense canopy, as well as potential allelopathic interference. This study was conducted in conjunction with laboratory experiments that revealed that certain fine-leaf fescue cultivars produced phytotoxic root exudates that were released into the rhizosphere over time. Additional field studies conducted in Ithaca showed that cultivars Intrigue, Columbra, and Sandpiper were consistently more weed suppressive than the other fine-leaf fescues evaluated. Although our understanding of the dynamics of production and degradation of fine-leaf fescue root exudates in the rhizosphere is limited, recent field studies also suggest that allelopathic interference as well as the ability to rapidly establish influence subsequent weed infestation in fine-leaf fescue stands. From a more practical standpoint, certain fine-leaf fescue cultivars, including Intrigue, Columbra, Sandpiper, and Reliant II, could be recommended for use in low-maintenance turf settings in the northeastern United States due to their aesthetic appeal and their limited weed infestation in circumstances where herbicides are not applied.

Free access