Search Results

You are looking at 11 - 16 of 16 items for :

  • Author or Editor: Kenneth R. Schroeder x
  • HortScience x
Clear All Modify Search

Cut flowers of a short (S)-lived (3-day) inbred, a long (L)-lived (15-day) inbred and their hybrid (F1, 7.3 days) of Antirrhinum majus L. were evaluated for fresh weight and ethylene evolution change postharvest when held in deionized water. Fresh weight change of all accessions increased 1 day postharvest then declined over the remainder of postharvest life. The loss of fresh weight was most rapid for S and less rapid for F1 and least rapid for L. Ethylene release postharvest for S and F1 started on day 1, but for L ethylene release started on day 9. Once ethylene evolution began it continued through postharvest life. On the last day of postharvest life, ethylene release from S and F1 were similar, but L was twice the level as S and F1. It appears that a slower decline in fresh weight, a delay in outset of ethylene release and higher final amount of ethylene release at senescence are heritable and associated with longer keeping time of A. majus.

Free access

An inbred backcrossing approach was taken to transfer long postharvest keeping time of cut flowers from a white inbred line of Antirrhinum majus L. into a yellow short-lived inbred line. Three backcrosses to the short-lived recurrent parent were done followed by three generations of selfing by single-seed descent. Plants from 56 accessions of BC1S3 through BC3S3 were grown twice (June and August 1995) in a greenhouse and flower stems harvested for postharvest longevity evaluation. Postharvest evaluation was done in deionized water under continuous fluorescent light. Longevity was determined as the number of days from cutting to discard when 50% of the open florets on a flower stem wilted or turned brown. One yellow accession was retrieved that was not significantly different in postharvest longevity from the white long-lived parent. Environment substantially influenced postharvest longevity over harvest dates. Possible causes for variation of postharvest keeping time will be presented.

Free access

Gibberellic acid (GA3) and photoperiod were used in combination in an effort to reduce generation time of Antirrhinum majus L. Four commercial inbred lines of A. majus were started from seed and grown in a glasshouse in winter 1993-94. GA3 was applied as a foliar spray every 2 weeks at 0, 144, 289, 577, or 1155 μm starting 5 weeks after seeds were sown. Supplemental lighting (60 μmol·m–2·s–1) from 0600 to 2000 hr and night interruption from 2300 to 0300 hr was used throughout the experiment. Data were collected weekly on plant height and leaf count from the start of GA3 treatments through anthesis. Time to flowering was determined as days from seed sowing to anthesis. GA3 treatment of A. majus under a long-day photoperiod increased time to flowering, plant height and leaf count. It would appear that long-days may have overridden the floral induction effects of GA3.

Free access

Three percent hydrogen peroxide (H2O2) was diluted with deionized water (dH2O) to 0.75%, 0.38%, 0.19%, 0.09%, or 0.05% H2O2 plus 1.5% sucrose for use in evaluation of Antirrhinum majus L. (snapdragon) cut flowers. Other vase solutions used as controls included; 300 ppm 8-hydroxyquinoline citrate (8-HQC) plus 1.5% sucrose; dH2O plus 1.5% sucrose; and dH2O. A completely random design with 7 replicationss was used. Flowering stems of three commercial inbreds and one F1 hybrid of snapdragon were cut when the first five basal florets opened. Each stem was placed in an individual glass bottle containing one of the eight different treatments. Flowering stems were discarded when 50% of the open florets wilted, turned brown, or dried. Postharvest life was determined as the number of days from stem cutting to discard. Addition of H2O2 to vase solutions at rates of 0.19 and 0.09% resulted in postharvest life not different from that obtained with 8-HQC plus sucrose. Hydrogen peroxide plus sucrose extended postharvest life of snapdragon cut flowers 6 to 8 days over dH2O and 5 to 7 days over dH2O plus 1.5% sucrose.

Free access

Expanding shoot tips of Pulmonaria `Roy Davidson' and Pulmonaria saccharata `Margery Fish' were cultured in vitro on a modified Murashige and Skoog medium containing BA to establish proliferating cultures for use in comparing BA concentrations on shoot proliferation and rooting. The optimum level for shoot proliferation was 8.8 μm BA. Greatest rooting was on medium without BA. Genotype and time in culture influenced shoot and root counts. Chemical names used: N6-benzyladenine (BA)

Free access

Heat stress is problematic to root growth in the production of containerized nursery plants. Container color may moderate effects of solar radiation on substrate temperatures. Studies were conducted near Manhattan, KS, to evaluate effects of container color on growth of roots and shoots in bush beans (Phaseolus vulgaris L.), red maple (Acer rubrum L.), and eastern redbud (Cercis canadensis L.). Four treatments among studies included containers colored flat and gloss white, silver, and black; a green container color treatment was added to the tree studies. Plants were grown in bark-based soil-less substrate and temperatures were measured at 5-cm depths in the south sides and centers. After 4 months, plant variables were measured. Roots were separated into three sections: core, north, and south. In the bean study, substrate temperatures at the south side of the container averaged lowest in flat and gloss white (≈36 °C) and greatest in black containers (50.3 °C). Root density at the south side was reduced in beans by 63% to 71% in black compared with flat and gloss white. In heat-sensitive maples, substrate temperatures at the south side of containers averaged up to 7.7 °C greater in black and green than in other treatments. Substrate temperatures in the center averaged 3.5 to 3.8 °C greater in black than in flat and gloss white, resulting in up to 2.5 times greater root density in flat and gloss white than in black containers. In heat-tolerant redbuds, the effects of container color on whole-plant growth were less evident. Data suggest that heat-sensitive plants benefit from being grown in white containers or painting outer surfaces of green and black containers white.

Free access