Search Results

You are looking at 11 - 19 of 19 items for

  • Author or Editor: Jungmin Lee x
Clear All Modify Search

Growers of high-end ‘Pinot noir’ wine grapes (Vitis vinifera L.) commonly reduce yield by cluster thinning with the goal of increasing fruit quality; however, there are no objectively defined yield targets to achieve optimum fruit composition. Canopy leaf area relative to fruit yield can affect total soluble solids (TSS), and recommendations have been established for warm wine grape production regions. However, the relationship between leaf area and photoassimilation differs among climates and training systems. Leaf area to yield (LA:Y) ratios developed in warm, arid regions may not be suitable for cool, wet regions such as western Oregon. A 3-year field study was conducted to elucidate relationships between canopy to yield ratios and berry composition for ‘Pinot noir’. Vegetative growth and fruit yield were manipulated through competitive cover cropping and cluster thinning. Growth was manipulated in three ways: perennial red fescue (Festuca rubra L.) was grown in 1) both (Grass), 2) one (Alternate), or 3) neither (Tilled) of the alleyways flanking the vine row. Within each vineyard floor treatment, fruit clusters were thinned to one per shoot (Half Crop) or vines were left unthinned (Full Crop). Floor management influenced both canopy size and yield because of altered vine nitrogen (N) status. Effects of crop load on berry components were not always consistent between the crop load metrics used [yield to pruning weight (Y:PW) ratio or LA:Y]. In 2 years, TSS reached a maximum at similar LA:Y; however, this did not necessarily produce optimum TSS. Yield had the greatest influence on pH and total anthocyanins (ACY) in the highest yielding, coolest year. Crop load metrics were not reliable predictors of TSS because of the dominant effect of seasonal variation. Relationships between canopy to yield metrics and other berry components were partially explained by tissue N, photosynthetic photon flux (PPF) through the cluster zone, and/or yield. Cluster thinning to adjust yields may not alter source to sink relationships or canopy to yield ratios enough to overcome ripening limitations in cool climates. Only one wine vintage had sensory differences with Alternate-Half Crop and Alternate-Full Crop wines ranked high quality and Tilled-Half Crop and Tilled-Full Crop wines ranked low quality by both consumer and winemaker panels. Therefore, cluster thinning may have limited impact on wine sensory properties.

Free access