Search Results

You are looking at 11 - 20 of 33 items for

  • Author or Editor: Jude Grosser x
Clear All Modify Search

Colchicine-induced stable autotetraploid plants were recovered through indirect organogenesis from stem sections of in vitro-grown zygotic seedlings of pink/red-fleshed pummelo (Citrus grandis L. Osbeck) selections cybrid Hirado Buntan (C-HBP) (pink), 5-1-99-3 (dark pink), and HBJL-5 (red), all derived from Hirado Buntan pink pummelo. Multiple shoot induction was achieved through indirect organogenesis from the callus produced from the cut ends of the treated explants. Ploidy levels of regenerated plantlets were determined through flow cytometry at a stage when recovered shoots had one to two expanded leaves. Recovered tetraploids proved to be stable after 2 years in the field. As expected, higher colchicine concentrations and treatment durations decreased the survival rates of the regenerated plantlets. Colchicine concentrations of 0.05% and 0.1% produced the most tetraploids; of the 19 total tetraploids produced, 10 were produced from the treatment with a colchicine concentration of 0.1% and six were produced from treatment with a concentration of 0.05%. After flowering, these stable pink/red-fleshed tetraploid plants generated should be useful as breeding parents in our grapefruit/pummelo improvement program, especially if any show canker tolerance or reduced furanocoumarins. Use of monoembryonic tetraploids in interploid citrus crosses eliminates the need for embryo rescue to recover seedless triploid progeny; this research expands our pool of available high-quality monoembryonic tetraploid parents.

Free access

Anthocyanins are beneficial bioflavonoids that have numerous roles in human health maintenance, disease prevention, and overall well-being. In addition, anthocyanins are key to the consumer appeal of many ornamental plants. Most citrus (Citrus L.) plants do not produce anthocyanins under warm tropical and subtropical conditions. Anthocyanin pigments, responsible for the “blood” color of blood orange [Citrus sinensis (L.) Osbeck], are produced after exposure to cold conditions during the fruit’s development. The transcription factor Ruby is responsible for the production of anthocyanin in blood orange. Functionally, similar genes exist in other fruit crops such as grape [Vitis vinifera L. (VvmybA1 and VvmybA2)] and apple [Malus ×domestica Borkh (MdMYB10)]. Here, VvmybA1 and Ruby genes were constitutively expressed in ‘Mexican’ lime (Citrus aurantifolia Swingle). This cultivar performs optimally under Florida’s humid subtropical environment and has a short juvenile phase. Constitutive expression of VvmybA1 or Ruby resulted in anthocyanin pigmentation in the leaves, stems, flowers, and fruit. An increased pigmentation of the outer layer(s) of stem tissue was observed in ‘Mexican’ lime overexpressing the VvmybA1, whereas lower anthocyanin levels were observed in plants overexpressing Ruby. Enhanced pigmentation was also observed in the young leaves; however, pigment intensity levels decreased as the leaves matured. Flower color ranged from light pink to fuchsia and the fruit pulp of several ‘Mexican’ lime lines were maroon; similar to a blood orange. The results demonstrate that expression of anthocyanin-related genes can affect temporal pigmentation patterns in citrus. It also opens up the possibility for the development of modified blood orange and other cultivars adapted to the subtropical environment.

Free access

Sweet orange (Citrus sinensis L. Osbeck) is the most horticulturally important and widely grown Citrus species in Florida and worldwide, and `Valencia' is the most important cultivar for processing. Frozen concentrate orange juice has been the primary product of the Florida and Brazilian industries, but recently there has been a strong shift to not from concentrate (NFC) product in Florida. The higher quality NFC has a greater consumer appeal, and brings a higher market price. The development of higher quality oranges with expanded maturity dates will facilitate this change and should increase the competitive ability of the Florida industry. No true sweet orange cultivars have been developed by conventional breeding due to biological impediments, and alternative methods to obtain genetic variation are being investigated, including studies of somaclonal variation. We have produced nearly 1000 somaclones of `Valencia' sweet orange using organogenesis, somatic embryogenesis, and protoplasts. Following several years of fruit evaluation, early and late maturing high quality somaclones have been identified based on juice analytical data (brix, acid, ratio, juice percentage, juice color, and lbs. solids). These clones have also performed exceptionally in taste panel evaluations comparing them with the traditional mid- and late-season cultivars. Second generation trees of the most promising clones have been propagated for further evaluation, and superior processing clones will be released to the Florida industry in the near future. An overview of this program including pilot plant juice quality data and taste panel results will be presented.

Free access

There is accumulating evidence that root system collapse is a primary symptom associated with Huanglongbing (HLB)-induced tree decline, especially for commercial sweet orange and grapefruit trees on Swingle and Carrizo rootstocks. Maintaining root health is imperative to keep trees productive in an HLB-endemic environment. Preliminary greenhouse and field studies have shown that HLB-impacted trees had secondary and micronutrient deficiencies that were much greater in the roots than in the leaves, and that treatments containing three-times the recommended dose of manganese (Mn) improved tree health and growth and increased feeder root density in greenhouse trees. These results suggested that trees in an HLB-endemic environment have higher specific micronutrient requirements than those currently recommended. To test this hypothesis, established Vernia sweet orange grafted onto rough lemon rootstock trees were divided into eight supplemental CRF nutrition treatments (including two-times and four-times the recommended doses of Mn and boron) using a randomized complete block design in a commercial grove in St. Cloud, FL. The following supplemental nutrition treatments were used: no extra nutrition (control); Harrell’s–St. Helena mix 0.9 kg per tree; Harrell’s with 32 g of Florikan polycoated sodium borate (PSB) per tree; Harrell’s with 90 g of TigerSul® Mn sulfate (MS) per tree; Harrell’s with 32 g of PSB and 90 g of MS per tree; 180 g of MS per tree; 64 g of PSB per tree; and 180 g of MS plus 64 g of PSB per tree applied every 6 months since Fall 2015. Leaf and soil nutritional analyses were performed in Mar. 2017, Sept. 2017, and May 2018; a quantitative polymerase chain reaction was performed for Candidatus Liberibacter asiaticus (CLas) titer estimation in Nov. 2017. Significantly higher cycle threshold (Ct) values indicating reduced CLas bacterial populations were observed in trees that received the higher doses of Mn, especially those receiving four-times the recommended dosage of Mn (180 g Mn). Many trees exhibited Ct values of 32 or more, indicating a nonactive infection. Fruit yields of these trees were also increased. No significant differences in juice characteristics, canopy volume, and trunk section area were found between control plants and plants treated with 180 g Mn. Soil and leaf nutrients B, K, Mn, and Zn were significantly different among treatments at various times during the study. Our results strongly suggest that overdoses of Mn can suppress CLas bacterial titers in sweet orange trees on rough lemon rootstock, thus providing a therapeutic effect that can help restore tree health and fruit yields. This response was not observed when Mn and B were combined in the overdose, suggesting an antagonistic effect from B on Mn metabolism. When an overdose of Mn is used, biological functions and tree tolerance lost due to nutritional imbalances caused by HLB might be restored. Further studies are needed to elucidate which metabolic pathways are altered by comparing overdosed and conventionally fertilized HLB-impacted trees and to determine if the observed therapeutic effects can be achieved in trees grafted to other important commercial rootstocks.

Open Access

Sour orange has been a premier citrus rootstock worldwide due to its ability to perform on challenging soils and to produce and hold high-quality fruit. However, increasingly widespread quick-decline isolates of citrus tristeza virus (CTV) have destroyed entire industries on sour orange in some countries, and are in the process of destroying millions of trees on sour orange in Florida. CTV also threatens other citrus locations planted heavy to sour orange, including Texas and Mexico. An acceptable alternative rootstock to replace sour orange is in high demand but has yet to be developed. Molecular analyses have recently determined that sour orange is probably a hybrid of pummelo and mandarin. We report the production of 12 new mandarin + pummelo somatic hybrids produced by protoplast fusion from selected superior mandarin and pummelo parents, in efforts to develop a suitable replacement sour-orange-like rootstock that is resistant to CTV-induced quick decline. Somatic hybrids from all 12 parental combinations were confirmed by a combination of leaf morphology, flow cytometry, and RAPD analyses (for nuclear hybridity). These new mandarin + pummelo somatic hybrids are being propagated by rooted cuttings as necessary to conduct quick-decline resistance assays and to assess horticultural performance in replicated field trials.

Free access

Citrus canker disease caused by the bacterial pathogen Xanthomonas axonopodis pv. citri is becoming a worldwide problem. Xa21 gene is a member of the Xa21 gene family of rice, which provides broad spectrum Xanthomonas resistance in rice. `Hamlin' sweet orange [Citrus sinensis (L.) Osbeck) is one of the leading commercial cultivars in Florida because of its high yield potential and early maturity. `Hamlin' also has a high regeneration capacity from protoplasts and is often used in transformation experiments. Since the citrus canker pathogen is in the same genus, this gene may have potential to function against canker in citrus. The wild-type Xa21 gene contains an intron, and there are some questions whether dicot plants can process genes containing monocot introns (the cDNA is intron-free). Plasmids DNA, encoding the non-destructive selectable marker EGFP (Enhanced Green Fluorescent Protein) gene and the cDNA of the Xa21 gene were transformed or co-transformed into `Hamlin' orange protoplasts using polyethylene glycol. More than 200 transgenic embryoids were recovered. More than 400 transgenic plants were developed from 75 independent transgenic events. PCR analysis revealed the presence of the cDNA of the Xa21 and the GFP genes in the transgenic plants. Some of the plants have the GFP only. Southern analysis is showing integration of the cDNA into different sites ranges from one to five sites. Western analysis is showing the expression of the cDNA of the Xa21 gene in the transgenic citrus plants. This is the first time that a gene from rice has been stably integrated and expressed in citrus plants. Canker challenge assay is in progress.

Free access

The international fresh citrus market now demands high-quality, seedless fruit that must also be easy to peel for consumer convenience, especially when considering new mandarin varieties. High quality varieties that historically perform well in Florida are generally seedy. Florida is therefore losing market-share to `Clementine' and other seedless varieties produced in Mediterranean climates, including Spain, Morocco, and California. In our ongoing program, somatic hybridization and cybridization via protoplast fusion are now playing a key role in strategies to develop competitive seedless mandarin hybrids adapted to Florida. Somatic hybridization is being used to combine elite diploid parents to produce high quality allotetraploid breeding parents that can be used in interploid crosses to generate seedless triploids. Several thousand triploid mandarin hybrids have been produced under the direction of F.G. Gmitter, Jr. Some of our allotetraploid somatic hybrids are producing fruit with direct cultivar potential, i.e., 'Valencia' sweet orange + `Murcott' tangor. New somatic hybrids produced in our program will be discussed, including `Page' tangor + `Dancy' mandarin, `Page' tangor + `Kinnow' mandarin, and `Hamlin' sweet orange + LB8-9 tangelo. Somatic cybridization is being used to transfer CMS (cytoplasmic male sterility) from the seedless `Satsuma' mandarin to other seedy varieties via mtDNA transfer, in efforts to make them seedless. New somatic cybrids produced in our program that contain the `Satsuma' CMS include `Murcott' tangor and `Kinnow' mandarin. Details of these results and other progress will be discussed.

Free access

Protoplasm culture following polyethylene glycol-induced fusion resulted in the regeneration of tetraploid somatic hybrid plants from the following attempted parental combinations: Cleopatra mandarin (Citrus reticulata Blanco) + Argentine trifoliate orange [Poncirus trifoliata (L.) Raf.]; `Succari' sweet orange [C. sinensis (L.) Osb.] + Argentine trifoliate orange; sour orange (C. aurantium L.) + Flying Dragon trifoliate orange (P. trifolita); sour orange + Rangpur (C. limonia Osb.); and Milam lemon (purported sexual hybrid of C. jambhiri Lush × C. sinensis) + Sun Chu Sha mandarin (C. reticulate Blanco). Protoplasm isolation, fusion, and culture were conducted according to previously published methods. Regenerated plants were classified according to leaf morphology, chromosome number, and peroxidase, phosphoglucomutase, and phosphoglucose isomerase leaf isozyme profiles. All of the somatic hybrid plants were tetraploid, as expected (2n = 4x = 36), and all five selections have been propagated and entered into commercial citrus rootstock trials.

Free access

Allotetraploid somatic hybrid plants of `Nova' tangelo [a sexual hybrid of `Clementine mandarin (C. reticulata Blanco) × `Orlando' tangelo (C. reticulata × C. paradisi Macf.)] + `Succari' sweet orange (C. sinensis L. Osbeck), and `Hamlin' sweet orange (C. sinensis L. Osbeck) + `Dancy' tangerine (C. reticulata) were regenerated following protoplast fusion. `Nova' and `Hamlin' protoplasts were isolated from ovule-derived embryogenic callus and suspension cultures, respectively, and fused using a polyethylene glycol method with seedling leaf-derived protoplasts of `Succari' and `Dancy', respectively. Plants were regenerated via somatic embryogenesis, and somatic hybrids were identified on the basis of leaf morphology, root-tip cell chromosome number, and electrophoretic analysis of peroxidase and phosphoglucose mutase isozyme banding patterns. Diploid plants were regenerated from unfused protoplasts of `Hamlin', `Nova', and `Succari'. Tetraploid plants of `Hamlin' and `Succari' were also recovered, apparently resulting from homokaryotic fusions. No `Dancy' plants were recovered. The somatic hybrid and autotetraploid plants can be used for interploid hybridization with selected monoembryonic scions to generate improved seedless triploid tangor/tangelo cultivars. The lack of suitable tetraploid breeding parents has previously inhibited the development of quality seedless cultivars by this method.

Free access

No presently available rootstock combines all the available rootstock attributes necessary for efficient long-term citriculture (production and harvesting) of Mexican limes and other commercially important scions. In the present study, somatic hybridization techniques were used to combine the widely adapted Amblycarpa mandarin (also known as Nasnaran mandarin) with six different trifoliate/trifoliate hybrid selections: Benton, Carrizo, and C-35 citranges; Flying Dragon and Rubidoux trifoliate oranges; and a somatic hybrid of sour orange + Flying Dragon. The ultimate goal of this research is to generate polyploid somatic hybrids that express the complementary horticultural and disease resistance attributes of the corresponding parents, and have direct potential as improved tree-size controlling rootstocks. Somatic hybrids from all six parental combinations were confirmed by a combination of leaf morphology, flow cytometry, and randomly amplified polymorphic DNA (RAPD) (for nuclear hybridity) and cleaved amplified polymorphic sequence (CAPS) analyses (for mtDNA and cpDNA). This is the first report of citrus somatic hybridization using Amblycarpa mandarin. Unexpected hexaploid somatic hybrid plants were recovered from the fusion of Amblycarpa mandarin + C-35 citrange. Hexaploid hybrids should be very dwarfing and may have potential for producing potted ornamental citrus. Resulting somatic hybrid plants from all six combinations have been propagated by tissue culture and/or rooted cuttings and are being prepared for commercial field evaluation for their potential as improved rootstocks for Mexican lime and other important scions.

Free access